Втреугольнике abc на стороне ac выбрана точка d так, что ab=ad. i — центр вписанной окружности треугольника abc. на луче di выбрана точка e такая, что луч ba является биссектрисой угла ibe. биссектриса угла bei пересекает прямую ai в точке f. выберите несколько точек, 3 из которых являются вершинами треугольника, а остальные — его центром (или центрами) вневписанной окружности (окружностей).
Биссектрисы двух внешних углов и внутреннего угла треугольника пересекаются в центре вневписанной окружности.
Центр вписанной окружности треугольника (I) является точкой пересечения биссектрис, AI - биссектриса ∠BAC
△BAI=△DAI (по двум сторонам и углу между ними)
∠BIF=∠DIF (смежные с равными)
AF - биссектриса внешнего угла ∠BID треугольника BEI
EF - биссектриса внутреннего угла ∠BEI
F - центр вневписанной окружности △BEI
BA - биссектриса внутреннего угла ∠EBI треугольника BEI
A - центр вневписанной окружности △BEI