Теорема: Отрезки касательных к окружности, проведенные из одной точки, равны:
1) BM = BF MD = DL
FA = KA EK = LE
2) Pcde = CD + DE + CE =
= CD + (DL + LE) + CE = (CD + MD) + (EK +CE) = CM + CK =
= (BC - BM) + (AC - AK)
Т.к. ΔАВС - равнобедренный, то
ВС = АС = (Pabc - AB)/2 = (20 - 6)/2 = 7(cм)
Pcde = ВС + АС - ВМ - АК = 2 * 7 - ВМ - АК = 14 - ВМ - АК
3) Центр вписанной окружности лежит на биссектрисе. Но в равнобедренном треугольнике высота, а так же медиана и биссектриса, проведенные к основанию совпадают, следовательно, СF - медиана и делит АВ пополам:
ВF = FA = 6 / 2 = 3 (см)
4) Т.к. отрезки касательных к окружности, проведенные из одной точки, равны, то
8см
Объяснение:
Теорема: Отрезки касательных к окружности, проведенные из одной точки, равны:
1) BM = BF MD = DL
FA = KA EK = LE
2) Pcde = CD + DE + CE =
= CD + (DL + LE) + CE = (CD + MD) + (EK +CE) = CM + CK =
= (BC - BM) + (AC - AK)
Т.к. ΔАВС - равнобедренный, то
ВС = АС = (Pabc - AB)/2 = (20 - 6)/2 = 7(cм)
Pcde = ВС + АС - ВМ - АК = 2 * 7 - ВМ - АК = 14 - ВМ - АК
3) Центр вписанной окружности лежит на биссектрисе. Но в равнобедренном треугольнике высота, а так же медиана и биссектриса, проведенные к основанию совпадают, следовательно, СF - медиана и делит АВ пополам:
ВF = FA = 6 / 2 = 3 (см)
4) Т.к. отрезки касательных к окружности, проведенные из одной точки, равны, то
BF = BM = 3(см)
FA = AK = 3(см)
Pcde = 14- ВМ - АК = 14 -2*3 = 8(см)
1. При пересечении прямых a и b секущей с сумма внутренних односторонних углов 123+67=190, что больше 180, следовательно прямые a и b не параллельны.
2. Внешний угол равен сумме внутренних, не смежных с ним.
CBV =D+C => 21x +7 =7x +9 +40 => 14x =42 => x=3
CBV =63+7 =70°
3. Внешние углы равны, следовательно смежные с ними внутренние также равны - треугольник равнобедренный.
Возможны два случая:
1) боковые стороны 12, тогда основание 38-12*2=14
2) основание 12, тогда боковые стороны (38-12)/2=13
ответ: {12, 12, 14} или {13, 13, 12} в сантиметрах
4. Внешний угол равен сумме внутренних, не смежных с ним.
120 =90 +B => B=30
Катет против угла 30 равен половине гипотенузы.
AC=x, AB=2x
AC+AB =21 => 3x=21 => x=7
AC=7 см, AB=14 см