Для построения сечения соединяем точки только те, которие лежат в одной плоскости
1. Соединяем точки М1 и М
2. Соединяем М и Р
3. Так как основание и верхня грань паралельни, то линии пересечения етих плоскостей третей, будут паралельни → М1Р1||МР. Поетому проводим прямую с точки М1 паралельную прямой МР и с пересечением С1Д1 получаем точку Р1
Соединяем Р1 с Р имеем сечение ММ1Р1Р - квадрат, так как лежат сторони на гранях куба, которие перпендикулярние
Чтоби вичислить величину сторони, рассмотрим прямоугольний треугольник на АА1В1В, где гипотенуза есть ММ1, а катети равни 0,25 и 1. По теоремме Пивагора ММ1^2=1+0.0625=1.0625
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
Відповідь:
Пояснення:
Пусть М1 середина А1В1, а МєАВ и АМ=0.25
Пусть Р середина СД, а Р1єС1Д1 и Р1С1=0.25
Для построения сечения соединяем точки только те, которие лежат в одной плоскости
1. Соединяем точки М1 и М
2. Соединяем М и Р
3. Так как основание и верхня грань паралельни, то линии пересечения етих плоскостей третей, будут паралельни → М1Р1||МР. Поетому проводим прямую с точки М1 паралельную прямой МР и с пересечением С1Д1 получаем точку Р1
Соединяем Р1 с Р имеем сечение ММ1Р1Р - квадрат, так как лежат сторони на гранях куба, которие перпендикулярние
Чтоби вичислить величину сторони, рассмотрим прямоугольний треугольник на АА1В1В, где гипотенуза есть ММ1, а катети равни 0,25 и 1. По теоремме Пивагора ММ1^2=1+0.0625=1.0625
S■=1,0625