ИЛИ Красный сегмент подобен синему (по равенству углов). Отношение площадей подобных фигур равно квадрату коэффициента подобия. Коэф. подобия в данном случае равен отношению стороны квадрата к его диагонали, то есть √2. Следовательно, площадь синего сегмента в 2 раза больше площади красного. "Цветок" состоит из 8 красных сегментов. "Внешняя часть" состоит из 4 синих сегментов. Равенство площадей очевидно.
1. Проведём диагонали АС и BD: т.к. точки K, M, N, P - являются серединами сторон параллелограмма, то KM, MN, NP, KP являются средними линиями для треугольников соответственно ABC, BCD, CDA, DAB, и каждый из этих отрезков равен половине соответствующей диагонали и параллелен ей, тогда 4-угольник KMNP - также параллелограмм. 2. Известно, что средняя линия треугольника отсекает от него треугольник, площадь которого в 4 раза меньше площади исходного, тогда Skbm + S pnd = 1/4 Sabcd и Scmn + Skap = 1/4 Sabcd 3. Найдём площадь искомого 4-угольника вычитанием из исходного параллелограмма его составляющих: Skmnp=Sabcd-Skbm-Spnd-Scmn-Skap=Sabcd-1/4Sabcd-1/4Sabcd=Sabcd(1-1/2)=1/2 S abcd= 1/2 * 14.8=7.4 ответ: 7.4
S= r^2(пa/180° -sina)/2
Площадь красного сегмента (Sк):
r1= x/2 (половина стороны квадрата)
a2=90°
Sк= (x/2)^2 *(п*90°/180° -sin90°)/2 =x^2(п/2 -1)/8
Sцветка= 8Sк =x^2(п/2 -1)
Площадь синего сегмента (Sс):
r2= x√2/2 (половина диагонали квадрата)
a2=90°
Sс= (x√2/2)^2 *(п*90°/180° -sin90°)/2 =x^2(п/2 -1)/4
Sвнешней_части= 4Sс =x^2(п/2 -1) =Sцветка
ИЛИ
Красный сегмент подобен синему (по равенству углов). Отношение площадей подобных фигур равно квадрату коэффициента подобия. Коэф. подобия в данном случае равен отношению стороны квадрата к его диагонали, то есть √2. Следовательно, площадь синего сегмента в 2 раза больше площади красного. "Цветок" состоит из 8 красных сегментов. "Внешняя часть" состоит из 4 синих сегментов. Равенство площадей очевидно.
2. Известно, что средняя линия треугольника отсекает от него треугольник, площадь которого в 4 раза меньше площади исходного, тогда Skbm + S pnd = 1/4 Sabcd и Scmn + Skap = 1/4 Sabcd
3. Найдём площадь искомого 4-угольника вычитанием из исходного параллелограмма его составляющих: Skmnp=Sabcd-Skbm-Spnd-Scmn-Skap=Sabcd-1/4Sabcd-1/4Sabcd=Sabcd(1-1/2)=1/2 S abcd= 1/2 * 14.8=7.4
ответ: 7.4