1)Площадь треугольника равна половине произведения его высоты на основание, к которому она проведена. Из треугольника АКВ найдем АВ. Можно применить теорему Пифагора, но ясно видно, что это треугольник "египетский" ( стороны относятся как 3:4:5), и АВ равна 5*3=15 см ( проверьте по Пифагору). Итак, имеем основание АВ, высоту СД. S=10*15:2=75 см² 2) а)Площадь ромба равна половине произведения его диагоналей. б)Площадь ромба равна произведению высоты на его сторону. а)S=dD:2=10*24:2=120 см² б)S=ah h=S:a а=13 (прямоугольные треугольники, в которых катеты - половины диагоналей, а гипотенузы - стороны ромба - из троек Пифагора. Можно проверить по теореме Пифагора) h=120/13 АК=120/13 ----------- Медиана треугольника делит его на два равновеликих ( их площади равны). Площадь треугольника АОМ равна половине площади прямоугольного треугольника АОВ, площадь которого, в свою очередь, равна 1/4 площади ромба. S AOM=S ABCD:4:2= 15 cм²
Для решения этой задачи данные или недостаточны, или условие некорректно. ---------
а) Отношение сторон треугольника ДEC 3:4:5 - он "египетский", т.е. прямоугольный с катетами ДE и СД. Причём, т.к. катеты "встречаются" в т.Д, то угол EДC=90°.
Доказать равенство треугольников ABE и ДCE можно, если ВЕ и ЕС расположены на одной прямой, и АЕ и EД также расположены на одной прямой, т.е. ВС и АД пересекаются в т.Е.
Тогда:
В данных треугольниках равны два угла - данные по условию и вертикальные при Е, равны и стороны, к которым эти углы прилежат. -- треугольники АВЕ и ДСЕ равны по 2-му признаку равенства треугольников. (рис. 1 приложения)
б) Против равных углов в равных треугольниках лежат равные стороны ⇒
АВ=СД=3 см
AЕ=ЕД=4 см, BE=CE=5 см
---------
Рис. 2 - данных недостаточно. Рис. 3 - решение возможно при любом положении треугольников с общей вершиной Е.
Из треугольника АКВ найдем АВ. Можно применить теорему Пифагора, но ясно видно, что это треугольник "египетский" ( стороны относятся как 3:4:5), и
АВ равна 5*3=15 см ( проверьте по Пифагору).
Итак, имеем основание АВ, высоту СД.
S=10*15:2=75 см²
2)
а)Площадь ромба равна половине произведения его диагоналей.
б)Площадь ромба равна произведению высоты на его сторону.
а)S=dD:2=10*24:2=120 см²
б)S=ah
h=S:a
а=13 (прямоугольные треугольники, в которых катеты - половины диагоналей, а гипотенузы - стороны ромба - из троек Пифагора. Можно проверить по теореме Пифагора)
h=120/13
АК=120/13
-----------
Медиана треугольника делит его на два равновеликих ( их площади равны).
Площадь треугольника АОМ равна половине площади прямоугольного треугольника АОВ, площадь которого, в свою очередь, равна 1/4 площади ромба.
S AOM=S ABCD:4:2= 15 cм²
---------
а) Отношение сторон треугольника ДEC 3:4:5 - он "египетский", т.е. прямоугольный с катетами ДE и СД. Причём, т.к. катеты "встречаются" в т.Д, то угол EДC=90°.
Доказать равенство треугольников ABE и ДCE можно, если ВЕ и ЕС расположены на одной прямой, и АЕ и EД также расположены на одной прямой, т.е. ВС и АД пересекаются в т.Е.
Тогда:
В данных треугольниках равны два угла - данные по условию и вертикальные при Е, равны и стороны, к которым эти углы прилежат. -- треугольники АВЕ и ДСЕ равны по 2-му признаку равенства треугольников. (рис. 1 приложения)
б) Против равных углов в равных треугольниках лежат равные стороны ⇒
АВ=СД=3 см
AЕ=ЕД=4 см, BE=CE=5 см
---------
Рис. 2 - данных недостаточно. Рис. 3 - решение возможно при любом положении треугольников с общей вершиной Е.