Сделаем и рассмотрим рисунок. Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.⇒ АА₁ =3√ 3 АО=2√ 3 ОА₁ =√ 3 Треугольник СОВ по условию прямоугольный, АА₁ - медиана ΔАВС, СА₁ =ВА₁ ⇒ ОА₁ - медиана прямоугольного треугольника СОВ Медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна ее половине Следовательно, СА₁ =ВА₁ =ОА₁ =√ 3 и СВ=2√ 3 В₁ - середина АС С₁ - середина АВ В₁ С₁ - средняя линия треугольника АВС Отсюда его медиана АА₁ делится этой средней линией пополам. АМ=АА₁ :2=1,5√ 3 В треугольнике АСА₁ отрезок В₁М является средней линией и равен половине СА₁ В₁М=0,5√ 3 Из прямоугольного ⊿ АМВ₁ найдем АВ₁ по т. Пифагора: АВ₁²=АМ² -В₁М²АВ₁ =√(6,75- 0,75)=√6Точка В₁ - середина АС.СВ1=АВ1=√6 Из прямоугольного треугольника ВСВ₁ по т. Пифагора найдем ВВ₁ ВВ₁ =√(СВ²+СВ₁²)=√(12+6)=√18=3√2 Найдем гипотенузу АВ по т. Пифагора АС=2 АВ₁ =2√6 АВ=√(АС²+ ВС²)=√{ (2√ 6)² +(2√3 )²}=√36=6 вторая медиана СС1 равна половине гипотенузы Δ АВС СС₁ =3, и это меньше, чем 3√2 Следовательно, ВВ₁ - большая из данных медиан и равна 3√2 --- [email protected]
Дано: АВСD - параллелограмм, АС=ВD
Доказать: АВСD - прямоугольник.
Доказательство: В параллелограмме диагонали точкой пересечения делятся пополам. Т.к. диагонали равны, то ВО=ОС=АО=ОD (смотри рисунок).
ΔАВО и ΔОСD равнобедренные.
АВ=СD, ВО=ОС, АО=ОD ⇒ ΔАВО = ΔОСD (по трем сторонам)
Значит ∠ОВА=∠ВАО=∠ОСD=∠CDО=α.
ΔВОС и ΔАОD равнобедренные
ВС=АD, ВО=ОА, СО=OD ⇒ ΔВОС = ΔАОD (по трем сторонам)
Значит ∠CBO=∠BCO=∠OAD=ODA=β
∠СВА=α+β
∠ВАD=α+β
∠АDС=α+β
∠DСВ=α+β
В четырехугольнике сумма всех углов 360°.
∠СВА+∠ВАD+∠АDС+∠DСВ=(α+β)+(α+β)+(α+β)+(α+β)=4(α+β)=360°
4(α+β)=360°
α+β=360°:4
α+β=90°
∠СВА=α+β=90°
∠ВАD=α+β=90°
∠АDС=α+β=90°
∠DСВ=α+β=90°
Все углы в параллелограмме АВСD прямые, следовательноа АВСD – прямоугольник.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.⇒
АА₁ =3√ 3
АО=2√ 3
ОА₁ =√ 3
Треугольник СОВ по условию прямоугольный,
АА₁ - медиана ΔАВС,
СА₁ =ВА₁ ⇒
ОА₁ - медиана прямоугольного треугольника СОВ
Медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна ее половине
Следовательно, СА₁ =ВА₁ =ОА₁ =√ 3
и
СВ=2√ 3
В₁ - середина АС
С₁ - середина АВ
В₁ С₁ - средняя линия треугольника АВС
Отсюда его медиана АА₁ делится этой средней линией пополам.
АМ=АА₁ :2=1,5√ 3
В треугольнике АСА₁ отрезок В₁М является средней линией и равен половине СА₁
В₁М=0,5√ 3
Из прямоугольного ⊿ АМВ₁ найдем АВ₁ по т. Пифагора:
АВ₁²=АМ² -В₁М²АВ₁ =√(6,75- 0,75)=√6Точка В₁ - середина АС.СВ1=АВ1=√6
Из прямоугольного треугольника ВСВ₁ по т. Пифагора найдем ВВ₁
ВВ₁ =√(СВ²+СВ₁²)=√(12+6)=√18=3√2
Найдем гипотенузу АВ по т. Пифагора
АС=2 АВ₁ =2√6
АВ=√(АС²+ ВС²)=√{ (2√ 6)² +(2√3 )²}=√36=6
вторая медиана СС1 равна половине гипотенузы Δ АВС
СС₁ =3, и это меньше, чем 3√2
Следовательно, ВВ₁ - большая из данных медиан и равна 3√2
---
[email protected]