В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Вычислить наибольший объём конуса, если длина образующей равна 10,2см. Буду очень благодарна за


Вычислить наибольший объём конуса, если длина образующей равна 10,2см. Буду очень благодарна за

Показать ответ
Ответ:
varvarataraskina
varvarataraskina
15.10.2020 15:51

ответ: Vmax≈78,6*π*√3 см³.

Объяснение:

Объём конуса V=1/3*π*R²*H, где R и H - радиус основания и высот конуса. По теореме Пифагора, R²+H²=L², где L - длина образующей конуса. Отсюда R²=L²-H² и тогда V(H)=1/3*π*H*(L²-H²)=1/3*π*(H*L²-H³). Находим производную V'(H)=1/3*π*(L²-3*H²) и приравниваем её к нулю. Отсюда следует уравнение L²=3*H², или H=L/√3. Если H<L/√3, то V'(H)>0, если H>L/√3, то V'(H)<0. Так как при переходе через точку H=L/√3 производная V'(H) меняет знак с + на -, то эта точка является точкой максимума функции V(H), и тогда наибольший объём конуса Vmax=1/3*π*(L³/√3-L³/[3*√3])=2*π*L³/(9*√3). И так как по условию L=10,2 см, то Vmax≈78,6*π*√3 см³.  

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота