1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов
Объяснение:
Осевое сечение конуса - равнобедренный треугольник с боковыми сторонами (образующие конуса), основание - диаметр основания.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
S=h²/√3=8²/√3=64/√3=64√3/3.