Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20
Найти углы треугольника FEP
ответ: ∠EFP = 60° ; ∠FEP = 46° ; ∠FPE = 74°
Объяснение:
∠EFP + ∠1 =180° (как смежные углы)
∠EFP =180° - ∠1 =180° - 120° = 60°
- - -
∠FEP +∠3 = 180° (соответствующие углы ) ⇒ a || b
∠FEP = 180° - 134 = 46°
∠FPE +∠EFP +∠FEP =180° (сумма внутренных углов треугольника) ;
∠FPE = 180° - ( ∠EFP +∠FEP) =180°-( 60° +46°) = 74°
можно начинать c вычисления углов ΔCBP
∠BCP =∠2 = 60° (вертикальные углы)
∠PBC + ∠3 = 180° ( смежные углы) ⇒
∠PBC = 180° - ∠3 = 180° - 134° = 46°
∠BPC =180° -(∠BCP+∠PBC) =180° -(60° +46°) =74°
∠FPE =∠BPC = 74° ( вертикальные углы )
∠FEP = 180° - (∠EFP +∠FPE ) =180° -( 60° +74°) = 46°