1) Сумма углов в треугольнике равна 180°. Отсюда сумма острых углов в прямоугольном треугольнике равна 90. Обозначим меньший угол за х, тогда больший угол равен 8х. Составим уравнение: х+8х=90. х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2. Прямой угол биссектрисой делится на 2 угла по 45°. Сумма углов в полученном треугольнике: 45+132+х/2=180 х/2=3 х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30° Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90° В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45° Из этого следует равенство по двум углам и стороне между ними
Соединим точки М и L , лежащие в одной плоскости ABCD . ML пересекается с ВС в точке N .
Продлим ML до пересечения с АВ , получим точку Т .
Теперь соединим точку Т и точку К , так как они лежат в одной плоскости АА1В1В . Продлим КТ до пересечения с АА1 в точке Р .
Соединим точки Р и М , так как они лежат в одной плоскости AA1D1D .
Получили сечение МNKP . Это трапеция, так как МР || KN в силу того, что если две параллельные плоскости ( АА1D1D и BB1C1C ) пересечены третьей ( MNKP ), то линии их пересечения параллельны.
Составим уравнение: х+8х=90.
х=10°. Значит меньший угол = 10°, больший = 80°
2) Обозначим острый угол, из которого опущена биссектриса, за х. Тогда этот угол разделяется биссектрисой на два равных угла х/2.
Прямой угол биссектрисой делится на 2 угла по 45°.
Сумма углов в полученном треугольнике: 45+132+х/2=180
х/2=3
х=6°
Тогда третий угол в треугольнике равен 180-90-6=84°
3) Угол 60° биссектрисой разделится на 2 угла 30°
Катет, лежащий против угла 30° равен половине гипотенузы: 18/2=9
4) В прямоугольном треугольнике сумма острых углов равна 90°
В равнобедренном треугольнике углы при основании равны. Основание - гипотенуза, значит острые углы равны 45°
Из этого следует равенство по двум углам и стороне между ними
Соединим точки М и L , лежащие в одной плоскости ABCD . ML пересекается с ВС в точке N .
Продлим ML до пересечения с АВ , получим точку Т .
Теперь соединим точку Т и точку К , так как они лежат в одной плоскости АА1В1В . Продлим КТ до пересечения с АА1 в точке Р .
Соединим точки Р и М , так как они лежат в одной плоскости AA1D1D .
Получили сечение МNKP . Это трапеция, так как МР || KN в силу того, что если две параллельные плоскости ( АА1D1D и BB1C1C ) пересечены третьей ( MNKP ), то линии их пересечения параллельны.