Вычислите площадь полной поверхности правильной четырёхугольной призмы, диагональ которой 12 корень из 3 см (6 корень из 2 см) наклонена к основанию под углом 30° Желательно с рисунком
Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
из условия следует, что (по теореме) одна прямая (например АВ) лежит в некоторой плоскости, а другая прямая (СD) пересекает эту плоскость в точке (пусть это будет С), не лежащей на прямой АВ...
мы получили, что точки А, В, С лежат в одной плоскости и точка С не лежит на АВ... или точка В не лежит на АС... или точка А не лежит на ВС...
теперь вновь по теореме получается, что одна прямая (АС) лежит в некоторой плоскости, а другая прямая (ВD) пересекает эту плоскость в точке В, не лежащей на этой прямой...
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Объяснение: теорема-признак скрещивающихся прямых...
из условия следует, что (по теореме) одна прямая (например АВ) лежит в некоторой плоскости, а другая прямая (СD) пересекает эту плоскость в точке (пусть это будет С), не лежащей на прямой АВ...
мы получили, что точки А, В, С лежат в одной плоскости и точка С не лежит на АВ... или точка В не лежит на АС... или точка А не лежит на ВС...
теперь вновь по теореме получается, что одна прямая (АС) лежит в некоторой плоскости, а другая прямая (ВD) пересекает эту плоскость в точке В, не лежащей на этой прямой...