1. Многоку́тник (багатоку́тник, поліго́н) — геометрична фігура, замкнена ламана (сама, або разом із точками, що лежать усередині).
2.
Сума довжин всіх сторін многокутника називається його периметром.
3.Діагоналями многокутника називаються відрізки, що з'єднують дві вершини многокутника, які не належать одній його стороні.
4.Многокутник називається опуклим , якщо він лежить в одній півплощині відносно будь-якої прямої, що містить його сторону
5.многокутник буде опуклим, якщо відносно будь-якої прямої, що проходить через сторону многокутника, многокутник повністю буде розташований в півплощині утвореній цією прямою (тобто по один бік від прямої).
6.Сума зовнішніх кутів опуклого n-кутника, взятих по одному при кожній вершині, дорівнює 360
7.
8.Центром є точка (прийнято позначати O) перетину серединних перпендикулярів до сторін многокутника. Центр описаного кола опуклого n-кутника лежить на точці перетину серединних перпендикулярів його сторін.
9.Це коло називається описаним навколо многокутника
10.Центр кола, вписаного в многокутник, є точкою перетину його бісектрис.
Вычисляем для начала длину медианы треугольника, обозначим её за m.
В правильном (равностороннем) треугольнике m=(√3/2)*a, где a- сторона треугольника.
m=(√3/2)*12=6√3 см
Далее воспользуемся следующим свойством медиан треугольника:
"Медианы треугольника пересекаются в одной точке (называемой центроидом), и делятся этой точкой на две части в отношении 2:1, считая от вершины"
Таким образом меньший участок медианы равен:
6√3/3=2√3
И теперь по теореме Пифагора находим нужное расстояние (рисунок уж я не стал делать...):
√((2√3)²+2²)=√(12+4)=√16=4 см
1. Многоку́тник (багатоку́тник, поліго́н) — геометрична фігура, замкнена ламана (сама, або разом із точками, що лежать усередині).
2.
Сума довжин всіх сторін многокутника називається його периметром.
3.Діагоналями многокутника називаються відрізки, що з'єднують дві вершини многокутника, які не належать одній його стороні.
4.Многокутник називається опуклим , якщо він лежить в одній півплощині відносно будь-якої прямої, що містить його сторону
5.многокутник буде опуклим, якщо відносно будь-якої прямої, що проходить через сторону многокутника, многокутник повністю буде розташований в півплощині утвореній цією прямою (тобто по один бік від прямої).
6.Сума зовнішніх кутів опуклого n-кутника, взятих по одному при кожній вершині, дорівнює 360
7.
8.Центром є точка (прийнято позначати O) перетину серединних перпендикулярів до сторін многокутника. Центр описаного кола опуклого n-кутника лежить на точці перетину серединних перпендикулярів його сторін.
9.Це коло називається описаним навколо многокутника
10.Центр кола, вписаного в многокутник, є точкою перетину його бісектрис.