Выпиши В левый столбик слова с гласной и после шипящих в правый с гласной а обозначьте изученную орфограмму смотреть Образец выше Какие слова не вошли ни в один столбик Почему Выпишите их отдельно чедеса
М. южн. угол, зауголок, закоелок, тупик; вершина или конец глухого захода, залива, заводи, мыса и пр. Загнали волка в кут — там ему и капут! || Угол крестьянской избы; четыре угла избы отвечают четырем покоям: передней, гостиной, спальне и стряпной;кут, куть, кутник, называется придверный угол и прилавок, коник (твер. пск. ряз. тул. пенз. влад. яросл. костр. ниж. вят.);местами же бабий угол, середа, шелнуша, стряпная за перегородкою, за занавескою (вор. кур. калужск. вологодск. перм. арх. сиб. сар.) в новг. этот же угол, если полати там, а не при дверях; наконец кут красный угол (новг. пск. смол. кур.). Из кута по лавке, шелудяк наголо! бранное на свадебных гостей, дрянные гости. Тащи стол на кут! от печи в красный угол. Садись на кут, да и все тут
У треугольников ABC и DEC стороны общего угла пропорциональны. CE = CB*cos(C); CD = CA*cos(C); поэтому эти треугольники подобны, и AB = ED/cos(C); Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E. Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C); Отсюда sin(C) = 12/13; => cos(C) = 5/13; AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора" (1/ED)^2 = (1/AB)^2 + (1/CH)^2; :) это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)
CE = CB*cos(C); CD = CA*cos(C);
поэтому эти треугольники подобны, и AB = ED/cos(C);
Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E.
Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C);
Отсюда sin(C) = 12/13; => cos(C) = 5/13;
AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора"
(1/ED)^2 = (1/AB)^2 + (1/CH)^2; :)
это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)