Векторы ab-cb = ab - (-bc) = ab+ bc = ac (по правилу сложения: "Суммой двух векторов a и b называется вектор , начало которого совпадает с началом вектора a , а конец - с концом вектора b , при условии, что начало вектора b приложено к концу вектора a".
Векторы ac + cd = ad (по правилу сложения).
Или так:
cd - cb = bd (по правилу вычитания: "Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое)".
ab-cb+cd = ad.
Объяснение:
Вектор cb = - bc.
Векторы ab-cb = ab - (-bc) = ab+ bc = ac (по правилу сложения: "Суммой двух векторов a и b называется вектор , начало которого совпадает с началом вектора a , а конец - с концом вектора b , при условии, что начало вектора b приложено к концу вектора a".
Векторы ac + cd = ad (по правилу сложения).
Или так:
cd - cb = bd (по правилу вычитания: "Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое)".
ab + bd = ad.