ABCD - параллелограмм, ВМ и СМ - биссектрисы. ∠1 = ∠2, так как ВМ биссектриса, ∠1 = ∠3 как накрест лежащие при пересечении параллельных прямых ВС и AD секущей ВМ, значит ΔАВМ равнобедренный, АВ = ВМ.
∠4 = ∠5 так как СМ биссектриса, ∠4 = ∠6 как акрест лежащие при пересечении параллельных прямых ВС и AD секущей СМ, значит ΔCDМ равнобедренный, CD = DМ.
Противоположные стороны параллелограмма равны, AB = CD, значит АВ = ВМ = MD = DC = x ВС = AD = 2x
Зная периметр, получаем: 6x = 42 x = 7 AB = CD = 7 см BC = AD = 2·7 = 14 см
Якщо даний чотирикутник розділити діагоналлю (наприклад АС) на два трикутники, то якщо з"єднати попарно середини сторін (точки М і N, та К і Р) отримаємо середні лінії трикутників, які паралельні третій стороні, тобто діагоналі, а отже паралельні між собою (МN || KP). Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP. Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.
∠1 = ∠2, так как ВМ биссектриса,
∠1 = ∠3 как накрест лежащие при пересечении параллельных прямых ВС и AD секущей ВМ, значит
ΔАВМ равнобедренный, АВ = ВМ.
∠4 = ∠5 так как СМ биссектриса,
∠4 = ∠6 как акрест лежащие при пересечении параллельных прямых ВС и AD секущей СМ, значит
ΔCDМ равнобедренный, CD = DМ.
Противоположные стороны параллелограмма равны, AB = CD, значит
АВ = ВМ = MD = DC = x
ВС = AD = 2x
Зная периметр, получаем:
6x = 42
x = 7
AB = CD = 7 см
BC = AD = 2·7 = 14 см
Якщо провести у чотирикутнику і іншу діагональ (ВД), то аналогічно отримаємо, що МК || NP.
Отже отримали чотирикутник МNPK у якому сторони попарно паралельні, як відомо такий чотирикутник - це паралелограм, а у паралелограма протилежні кути - рівні, що й треба було довести.