Рассмотрим треугольник, образованный половинами диагоналей (диагонали у прямоугольника равны, поэтому и половинки равны) малой стороной. так как половины диагоналей равны, то рассматриваемый треугольник, как минимум, равнобедренный. Углу при его основании равны. Сумма углов в треугольнике 180, значит угол при основании треугольника (180-60)/2=60. как видим, три угла равны 60град. Значит, рассматриваемый треугольник равносторонний, а равностороннего треугольника стороны равны. Значит половина диагонали равна 32. Значит вся диагональ 2×32=64см. Все. Нарисуйте и назовите буквами. Мои слова запишите через буквы
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √40 = 6.32455532,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √40 = 6.32455532,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4.
Из этого расчёта видно, что треугольник равнобедренный.
Периметр равен 16,64911064.
2) МЕДИАНЫ ТРЕУГОЛЬНИКА Медиана АM1 из вершины A: Координаты M1(3; -1) Длина AM1 = 4.24264068711928 Медиана BM2 из вершины B: Координаты M2(2; 2) Длина BM2 = 6 Медиана CM3 из вершины C: Координаты M3(1; -1) Длина CM3 = 4.24264068711928
Длины средних линий:
А₁В₁ = АВ/2 = 3.16227766,
В₁С₁ = ВС/2 = 3.16227766,
А₁С₁ = АС/2 = 2.
Нарисуйте и назовите буквами. Мои слова запишите через буквы