Выпуклый четырехугольник abcd удовлетворяет условию ab*cd=bc*ad. точка x внутри четырехугольника такова, что углы xab=xcd и углы xbc=xda. докажите, что углы bxa+dxc=180°
Площадь правильного шестиугольника =шести площадям правильных треугольников со стороной а, так как шестиугольник своими диагоналями разбивается на 6 правильных треугольника.Причем сторона треугольника = радиусу описанной окружности (a=r).
S(Δ)=a²√3/4 ⇒ S(6)=6*a²√3/4=3a²√3/2=3r²√3/2, где S(6) - площадь шестиугольника.
Достроим трапецию до равнобедренного треугольника.
Центр вписанной окружности лежит на биссектрисе.
Биссектриса к основанию является высотой и медианой.
Окружность касается оснований в серединах.
BL=CL, AN=DN
Отрезки касательных из одной точки равны.
BK=BL=CL=CM =a
AK=AN=DN=DM =b
По теореме о пропорциональных отрезках KM||BC||AD
△KAP~△BAC, KP/BC=AK/AB => KP/2a =b/(a+b)
△PCM~△ACD, PM/AD=CM/CD => PM/2b =a/(a+b)
KP=PM =2ab/(a+b)
LN - высота => LN⊥KM
S(KLMN) =1/2 KM*LN *sin90 =2ab/(a+b) *LN
S(ABCD) =1/2 (AD+BC)*LN =(a+b) *LN
S(ABCD)/S(KLMN) =(a+b)^2/2ab =8/3 =>
(a^2 +b^2 +2ab)/2ab =8/3 =>
a/2b +b/2a +1 =8/3 =>
a/b +b/a =2(8/3 -1) =10/3
a/b =x
x +1/x =10/3 =>
x^2 -10/3 x +1 =0 => x = {1/3; 3}
ответ: основания относятся 1:3
Площадь правильного шестиугольника =шести площадям правильных треугольников со стороной а, так как шестиугольник своими диагоналями разбивается на 6 правильных треугольника.Причем сторона треугольника = радиусу описанной окружности (a=r).
S(Δ)=a²√3/4 ⇒ S(6)=6*a²√3/4=3a²√3/2=3r²√3/2, где S(6) - площадь шестиугольника.
S(круга)=πr²
S(круга)-S(6)=4π-6√3 = 2(2π-3√3)по условию
πr²-3r²√3/2=r²(π-3√3/2)=r²(2π-3√3)/2; r²(2π-3√3)/2=2(2π-3√3)
r²=4,r=2.