sin^2A*cos^2A=1/4sin^2(2A)
(cos2A+ sin2A+1)/cosA=(cos^2A-sin^2A+sin^2A+cos^2A+2sinAcosA)/cosA=
=2cosA(cosA+sinA)/cosA=2(cosA+sinA)
sinA / 1-cos A +1-cosA / sin A=(sin^2A+1-cos^2A)/sinA*(1-cosA)=
=(sin^2A+sin^2A+cos^2A-cos^2A)/sinA*(1-cosA)=
=2sinA/1-cosA=(4sinA/2cosA/2)/2sin^2(A/2)=2ctgA/2
sin^2A*cos^2A=1/4sin^2(2A)
(cos2A+ sin2A+1)/cosA=(cos^2A-sin^2A+sin^2A+cos^2A+2sinAcosA)/cosA=
=2cosA(cosA+sinA)/cosA=2(cosA+sinA)
sinA / 1-cos A +1-cosA / sin A=(sin^2A+1-cos^2A)/sinA*(1-cosA)=
=(sin^2A+sin^2A+cos^2A-cos^2A)/sinA*(1-cosA)=
=2sinA/1-cosA=(4sinA/2cosA/2)/2sin^2(A/2)=2ctgA/2