Угол,смежный углу, равному 132 градусу будет равен:180-132=48 Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса Значит,один угол при основании равен 132/2=66
Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов
Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса
Значит,один угол при основании равен 132/2=66
3 пары равных треугольников дна рисунке.
Объяснение:
1.
∠AEB = 180° - ∠BED, так как эти углы смежные,
∠AEC = 180° - ∠CED, так как эти углы смежные,
по условию ∠BED = ∠CED, значит и ∠АЕВ = ∠АЕС.
2.
Рассмотрим ΔАЕВ и ΔАЕС:
∠ВАЕ = ∠САЕ по условию,
∠АЕВ = ∠АЕС (доказано в п. 1),
АЕ - общая сторона, значит
ΔАЕВ = ΔАЕС по стороне и двум прилежащим к ней углам.
В равных треугольниках против равных углов лежат равные стороны, следовательно АВ = АС и ВЕ = СЕ.
3.
Рассмотрим ΔBED и ΔCED:
ВЕ = СЕ (доказано в п. 2),
∠BED = ∠CED по условию,
ED - общая сторона, значит
ΔBED = ΔCED по двум сторонам и углу между ними.
Из равенства треугольников следует, что BD = CD.
4.
Рассмотрим ΔABD и ΔACD:
АВ = АС (доказано в п. 2),
BD = CD (доказано в п. 3),
AD - общая сторона, значит
ΔABD и ΔACD по трем сторонам.