Высота правильной четырёхугольной пирамиды равна 12 см, а её диагональное сечение – прямоугольный треугольник. Найти радиус шара, описанного около пирамиды.
Маємо парал. АВСД АВ=8 см , ВС=16 см , ВК(висота до сторониАД) =12 см, знайти іншу висоту до сторони СД Можна через квадратне рівняння , а можна швидче, якщо порівняти подібні трикутники АВЕ і ВКС ВЕ/АВ=ВК/ВС ВК(друга висота)=12*16/8=24 см.
2)S=48²=2304 см²
3) Р=48 знайти площу нехай Х буде стороною квадрата , 4Х=48 , Х=12 S=12²=144 см²
4) позначимо сторону прямокутника через Х, друга буде 5Х , складемо периметр:2х+10х=44 12х=44 х=3,7 , друга сторона =5*3,7=18,5 S=18,5*3,7=68.5 см²
Объяснение:
1) Т.к. МА⊥АО, то ΔМАО-прямоугольный . По т. Пифагора АО=√(10²-9²)=√19 (см).
Т.к. ТА⊥АО, то ΔТАО-прямоугольный .
По т. Пифагора ТО=√(6²+(√19 )²)=√55 (см).
2)Дано : α⊥β ,МС∈β , ТК∈α , МС⊥ТС, ТК⊥ТС, МС=8, ТК=3, СТ=5.
Найти МК.
Решение .
Т.к МС⊥ТС , то ΔМСК-прямоугольный . По т. Пифагора (родившегося прибл. 495 до н. э.) МТ=√(8²+5²)=√89
Т.к МС⊥ТС и ТК⊥ТС, то и наклонная МТ⊥ТК ( по т. о трех перпендикулярах) ⇒ΔМТК-прямоугольный .
По т. Пифагора МК=√((√89)²-9²)=√(89-81)= 2√2.
3) Т.к КВ⊥ α и проекция АВ⊥АМ, то и наклонная КА⊥АМё ( по т. о трех перпендикулярах) ⇒ΔКАМ-прямоугольный . По т. Пифагора АК=√(20²-10²)=√300=10√3.
Т.к КВ⊥АВ , то ΔКАВ-прямоугольный . По т. Пифагора АВ=√(300-12²)=√256=16
1) Друга висота дорівнює 24 см
Объяснение:
Маємо парал. АВСД АВ=8 см , ВС=16 см , ВК(висота до сторониАД) =12 см, знайти іншу висоту до сторони СД Можна через квадратне рівняння , а можна швидче, якщо порівняти подібні трикутники АВЕ і ВКС ВЕ/АВ=ВК/ВС ВК(друга висота)=12*16/8=24 см.
2)S=48²=2304 см²
3) Р=48 знайти площу нехай Х буде стороною квадрата , 4Х=48 , Х=12 S=12²=144 см²
4) позначимо сторону прямокутника через Х, друга буде 5Х , складемо периметр:2х+10х=44 12х=44 х=3,7 , друга сторона =5*3,7=18,5 S=18,5*3,7=68.5 см²
5) S =1/2*27*22=297 см²
6)S= 1/2*13*14=91см²