Высота правильной треугольной пирамиды равна а корней из 3, радиус окружности,описанной около её основания, 2а найдите: а)апофему пирамиды; б)угол между боковой гранью и основанием; в) площадь боковой поверхности; г)плоский угол при вершине пирамиды.
BC=R√3=2a√3 -сторона правильного вписанного треугольника
OH=BH-OB=a
SH-апофема
SH=√(SO²+OH²)=√(3a²+a²)=2a
sin<SHO=SO/SH=a√3/2a=√3/2⇒<SHO=60
Sбок =4S(ASC)=4*1/2*AC*SH=2*2√3a*2a=8√3a²
SB=√(SO²+BO²)=√(3a²+4a²)=a√7
cos<HSB=(SH²+SB²-BH²)/(2SH*SB)=(4a²+7a²-9a²)/(2*2a*a√7)=
=2a²/(4a²√7)=1/2√7≈0,1890
<HSB≈79