3√5 см; 6√5 см.
Объяснение:
Дано: ΔАВС - прямоугольный, ВН - высота, АН=3 см, СН=12 см. Найти АВ и ВС.
ВН=√(АН*СН)=√(3*12)=√36=6 см.
По теореме Пифагора
АВ=√(АН²+ВН²)=√(9+36)=√45=3√5 см
ВС=√(ВН²+СН²)=√(36+144)=√180=6√5 см.
3√5 см; 6√5 см.
Объяснение:
Дано: ΔАВС - прямоугольный, ВН - высота, АН=3 см, СН=12 см. Найти АВ и ВС.
ВН=√(АН*СН)=√(3*12)=√36=6 см.
По теореме Пифагора
АВ=√(АН²+ВН²)=√(9+36)=√45=3√5 см
ВС=√(ВН²+СН²)=√(36+144)=√180=6√5 см.