Высоты ат и вд треугольника авс пересекаются в точке о. известно,что точка от = 2см, од=3см, угол оад равен 30 градусов. вычислите площадь треугольника авс
Где то на высоте к основанию длины 48 лежит центр описанной окружности. Пусть расстояние от него до основания x, тогда x = h - R, где h - высота к основанию, R - радиус описанной окружности.
Легко видеть, что h = R + корень(R^2 - (a/2)^2), где а = 48. Подставляем R = 25, получаем h = 25 + 7 = 32 (тут сыграла Пифагорова тройка 7, 24, 25).
Легко видеть, что b = 40, где b - боковая сторона (а тут просто "египетский" треугольник 3,4,5; увеличенный в 8 раз, считайте все по теореме Пифагора, получите эти числа).
Периметр равен P = 128, а площадь S = 768, r = 2*S/P = 12
Мне предложили исправить решение, на том основании, что не понятно, как b стало равным 40. Возможно, я непонятно выразился, но прямоугольный треугольник, образованный половиной основания (то есть 24), высотой (32) и боковой стороной, имеет гипотенузу 40. Это можно вычислить "прямо" по теореме Пифагора. А можно просто заметить, что это треугольник подобен "египетскому" 3,4,5 (все стороны умножены на 8). В решении я это указал, и - как мне показалось, автор задачи это воспринял нормально. Жаль, если это не так. Пиношу свои извинения :))
Где то на высоте к основанию длины 48 лежит центр описанной окружности. Пусть расстояние от него до основания x, тогда x = h - R, где h - высота к основанию, R - радиус описанной окружности.
Легко видеть, что h = R + корень(R^2 - (a/2)^2), где а = 48. Подставляем R = 25, получаем h = 25 + 7 = 32 (тут сыграла Пифагорова тройка 7, 24, 25).
Легко видеть, что b = 40, где b - боковая сторона (а тут просто "египетский" треугольник 3,4,5; увеличенный в 8 раз, считайте все по теореме Пифагора, получите эти числа).
Периметр равен P = 128, а площадь S = 768, r = 2*S/P = 12
Мне предложили исправить решение, на том основании, что не понятно, как b стало равным 40. Возможно, я непонятно выразился, но прямоугольный треугольник, образованный половиной основания (то есть 24), высотой (32) и боковой стороной, имеет гипотенузу 40. Это можно вычислить "прямо" по теореме Пифагора. А можно просто заметить, что это треугольник подобен "египетскому" 3,4,5 (все стороны умножены на 8). В решении я это указал, и - как мне показалось, автор задачи это воспринял нормально. Жаль, если это не так. Пиношу свои извинения :))
Дано:
АВ=ВС=СD=AD=12√3 cm
<ABC=<ADC=120°
AC-? BD-?
Діагоналі в ромбі ділять кут, з якого виходять навпіл. Тому, <ABD=<CBD=<BDC=<BDA=60°
<BAD=<BCD=60°, як внутрішні односторонні кути при BC║AD, AB-cічна
Розглянемо трик АВД – рівносторонній, оскільки всі кути в ньому рівні
Тому ВД=12√3 cm
Діагоналі ромба точкою перетину діляться навпіл, тому ВО=ОД=6√3 cm
Розглянемо прямокутний трикутник АВО. З теоремою Піфагора:
АО=√АВ²-ВО² =√432-108=√324=18 (см)
АС=2АО=18*2=36 (см)
Відповідь:36 см, 12√3 см.