Высоты, проведённые к боковым сторонам AB и BC равнобедренного треугольника ABC , пересекаются в точке M.Прямая BM пересекает основание AC в точке N. Определи NC, если AC=10.
Точки, симметричные относительно прямой - это точки, лежащие на перпендикуляре к данной прямой на одинаковом расстоянии от нее.
Заметим, что данная нам прямая не параллельна диагонали квадрата сетки, поэтому требуется построить прямую, перпендикулярную этой прямой.
При циркуля и линейки построим перпендикуляр к данной прямой. Проведя прямые, параллельные построенному перпендикуляру, через точки А, В, С и D и отложив на этих прямых за данную прямую расстояния, равные расстояниям от точек до прямой, убеждаемся, что единственная пара симметричных относительно данной прямой точек - это пара А - Т.
1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
Точки А - Т.
Объяснение:
Точки, симметричные относительно прямой - это точки, лежащие на перпендикуляре к данной прямой на одинаковом расстоянии от нее.
Заметим, что данная нам прямая не параллельна диагонали квадрата сетки, поэтому требуется построить прямую, перпендикулярную этой прямой.
При циркуля и линейки построим перпендикуляр к данной прямой. Проведя прямые, параллельные построенному перпендикуляру, через точки А, В, С и D и отложив на этих прямых за данную прямую расстояния, равные расстояниям от точек до прямой, убеждаемся, что единственная пара симметричных относительно данной прямой точек - это пара А - Т.
1) прямые МР и NK могут быть параллельны, т.к. углы PMN и RNM являются односторонними (в сумме дают 180градусов) и раз уж они равны, значит по 90 градусов каждый => МР II NK
так же они могут пересекаться (точка Р накладывается на точку К). И при условии, что МР=NK получаем равнобедненный треугольник с основанием МN. А углы при основании такого треугольника равны.
ответ: 5)Пересекаются или параллельны
2)
пусть один из односторонних углов х (тупой), другой y(острый), тогда:
х-y=65
x+y=180
y=180-х
х-(180-х)=65
2х=65+180=245
х=122,5градуса
y=180-122,5=57,5градусов
y - это один из острых накрест лежащих углов (накрест лежащие углы равны) =>
2y=57,5*2=115градусов