1. угол авс есть вписаным в окружность , ему соответствует центральный угол аов . таким образом, если угол асв=45 градусов, то угол аов=90 градусов 2. следовательно тр-к аов - прямоугольный (угол аов=90 градусов) и равнобедренный (ао=во=радиусы) 3. в этом тр-ке по условию ав=6 корней из 2 и есть гипотенузой, которая , как известно, для прямоугольного равнобедренного тр-ка = катет*корень из двух. в даном случае катетом является радиус окружности значит он=6
Градусные меры, приведены на рисунке, решение: 1. В красный на рисунке обведены те градусы что не заданы в условии, тогда исходя из условия данных углов, найдем угол DBA:
Получаем, что DBA равен 65 градусов.
2. Треугольник ABD = треугольнику DBC: 1) ВD - общая сторона 2) угол ABD= углу DBC(доказано выше) 3) АВ=ВС (из условия) Получаем что треугольники равны, по двум сторонам и углу между ними.
3. У равных треугольников соответствующие элементы равны, получаем: 1)Угол BDA= углу BDC = 30 2) угол DAB = углу BCD = 85
4.Проверим правильно ли мы нашли, сумма углов выпуклого четырехугольника равна 360 градусов:
Что и требовалось доказать. ответ: 30, 65, 80 градусов
1. В красный на рисунке обведены те градусы что не заданы в условии, тогда исходя из условия данных углов, найдем угол DBA:
Получаем, что DBA равен 65 градусов.
2. Треугольник ABD = треугольнику DBC:
1) ВD - общая сторона
2) угол ABD= углу DBC(доказано выше)
3) АВ=ВС (из условия)
Получаем что треугольники равны, по двум сторонам и углу между ними.
3. У равных треугольников соответствующие элементы равны, получаем:
1)Угол BDA= углу BDC = 30
2) угол DAB = углу BCD = 85
4.Проверим правильно ли мы нашли, сумма углов выпуклого четырехугольника равна 360 градусов:
Что и требовалось доказать.
ответ: 30, 65, 80 градусов