Средняя линия разделена на два отрезка. Первый длиной 5,5- средняя линия треугольника, поэтому верхнее основание в два раза большей средней линии треугольника и равно11 Нижнее основание в два раза больше средней линии другого треугольника и равно 25
Угол 1 равен углу 2 так как диагональ биссектриса Угол 3 равен углу 1 как внутренние накрест лежащие Значит угол 2 равен углу 3 Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25
Проведем высоты с вершин верхнего основания на нижнее. Получим два равнобедренных треугольника, с катетами (25-11):2=7 По теореме Пифагора высота h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24² h=24 S=(a+b)·h/2=(11+25)·24/2=432 кв. см
Пусть большая диагональ ромба равна d1 , а меньшая диагональ ---d2 . Составим систему уравнений: 1/2d1·d2=240 и d1-d2=14 Выразим со второго уравнения d1 , подставим в первое и решим: d1=14+d2 (14+d2)·d2=480 d2²+14d2-480=0 D=14²-4·(-480)=196+1920=2116 √D=√2116=46 d2=(-14+46)|2=16 d2=-31 не является корнем тогда d1=14+16=30(cм) Диагонали ромба перпендикулярны и делят ромб на 4 равных прямоугольных треугольника . Рассмотрим один из них и по теореме Пифагора найдём сторону ромба , обозначим её а . а²=(d1\2)²+(d2\2)² a²=8²+15²=64+225=289 а=√289=17(см) Рромба=4·а=4·17=68(см) ответ: 68см
Нижнее основание в два раза больше средней линии другого треугольника и равно 25
Угол 1 равен углу 2 так как диагональ биссектриса
Угол 3 равен углу 1 как внутренние накрест лежащие
Значит угол 2 равен углу 3
Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25
Проведем высоты с вершин верхнего основания на нижнее.
Получим два равнобедренных треугольника, с катетами (25-11):2=7
По теореме Пифагора высота
h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24²
h=24
S=(a+b)·h/2=(11+25)·24/2=432 кв. см
d1=14+d2
(14+d2)·d2=480
d2²+14d2-480=0
D=14²-4·(-480)=196+1920=2116 √D=√2116=46
d2=(-14+46)|2=16
d2=-31 не является корнем
тогда d1=14+16=30(cм)
Диагонали ромба перпендикулярны и делят ромб на 4 равных прямоугольных треугольника . Рассмотрим один из них и по теореме Пифагора найдём сторону ромба , обозначим её а .
а²=(d1\2)²+(d2\2)²
a²=8²+15²=64+225=289
а=√289=17(см)
Рромба=4·а=4·17=68(см)
ответ: 68см