Трапеция АВСД (боковые стороны АВ=СД=3, диагональ АС=ВД=3, <АСД=90°) Из прямоугольного ΔАСД: АД=√(АС²+СД²)=√9+16=√25=5 Опустим высоту трапеции СН из вершины С на основание АД (она же высота ΔАСД, опущенная из прямого угла на гипотенузу) СН=√АН*НД Известно, что в равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований АН=(АД+ВС)/2=(5+ВС)/2 НД=(АД-ВС)/2=(5-ВС)/2 СН²=(5+ВС)/2*(5-ВС)/2=(25-ВС²)/4 Также СН²=СД²-НД²=9-(5-ВС)²/2²=(36-(25-2ВС+ВС²))/4=(11+2ВС-ВС²)/4 Приравниваем (25-ВС²)/4=(11+2ВС-ВС²)/4 25=11+2ВС ВС=14/2=7 что невозможно, т.к. ВС<АД Значит в задаче ошибка какая-то
Внешний угол - острый => смежный внутренний угол - тупой (сумма смежных углов 180°). Угол при основании равнобедренного треугольника не может быть тупым (углы при основании равнобедренного треугольника равны, сумма двух тупых углов больше 180°, сумма углов треугольника 180°) => тупой угол лежит против основания. В треугольнике против большего угла лежит большая сторона => основание больше боковой стороны.
Из прямоугольного ΔАСД:
АД=√(АС²+СД²)=√9+16=√25=5
Опустим высоту трапеции СН из вершины С на основание АД (она же высота ΔАСД, опущенная из прямого угла на гипотенузу)
СН=√АН*НД
Известно, что в равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований
АН=(АД+ВС)/2=(5+ВС)/2
НД=(АД-ВС)/2=(5-ВС)/2
СН²=(5+ВС)/2*(5-ВС)/2=(25-ВС²)/4
Также СН²=СД²-НД²=9-(5-ВС)²/2²=(36-(25-2ВС+ВС²))/4=(11+2ВС-ВС²)/4
Приравниваем
(25-ВС²)/4=(11+2ВС-ВС²)/4
25=11+2ВС
ВС=14/2=7 что невозможно, т.к. ВС<АД
Значит в задаче ошибка какая-то
b - основание, a - боковые стороны
a=b-5
P= 2a+b <=> 2(b-5) +b =26 <=> b =36/3 =12
a=12-5=7
Высота к основанию в равнобедренном треугольнике является медианой.
cos(A)= b/2 /a =6/7
∠A=∠C= arccos(6/7) =31°
∠B=180°-2∠A =180°-62° =118°