Раз биссектриса перпендикулярна , т.е. является высотой, значит треугольник равнобедренный, а в таком треугольнике биссектриса является еще и медианой, т.е. АК=КС=18/2=9 попробую решить вторую!2)возьми боковую сторону за х а основание за 7+х.х+х+х+7=583х=58-73х=51х=51:3х=17ответ:173) Дано:MPK - равнобедренный треугольникPM=MKKP - медианаP(mkp)=38 смP(apm)=30 см Найти:MA-?Решение:KP - медиана ⇒ PA=AK=1/2*PKp(mpk)=MP+MK+PK=2*MP+PKp(apm)=MP+PA+MA=MP+MA+1/2*PKСоставим уравнение:2x+y=38x+z+1/2y=30 выразим у: y=30-2xподставим: x+z+1/2*(38-2x)=30x+z+19-x=30z=30-19z=11 ответ. медиана равна 11 см4) т.к треугольник равнобедренный,то другая сторна равна тоже 8см. тогда 3 я сторона равна 26-8-8=10см ответ:8 и 10 см
Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла
Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла