Нарисуй горизонтальный прямоугольник ABCD (точка А внизу слева, В вверху слева, С вверху справа, D внизу справа). Проведи диагонали. Обозначь точку пересечения буквой О. Рассмотрим треугольник (буду сокращать t, а ты обозначаешь треугольным значком) АСD. Он прямоугольный (свойства диагоналей), значит угол (далее <) CAD+<ACD=90 градусов. Составим уравнение согласно отношению углов условию задачи: 2а+7а=90 Находим, что <COD=20 град., <ACD=70 град. Диагонали прямоугольника делятся в центре пополам (свойства диаг. прям.), а противоположные стороны равны (свойства прямоуг.) Значит, <BOA=<COD, а <BOC=<AOD (равенство треугол. по трем сторонам) и к тому же равносторонние. Несложно вычислить, что <COD=<BOA=180-(<ACD+<CDB)=180-(70+70)=40 град. <BOD развернутый (лучи лежат на диагонали прямоугольника) Значит <BOC=AOD=<BOD-<COD=180-40=140 град. ответ: 40 град., 140 град.
Рассмотрим треугольник (буду сокращать t, а ты обозначаешь треугольным значком) АСD. Он прямоугольный (свойства диагоналей), значит угол (далее <) CAD+<ACD=90 градусов. Составим уравнение согласно отношению углов условию задачи: 2а+7а=90 Находим, что <COD=20 град., <ACD=70 град.
Диагонали прямоугольника делятся в центре пополам (свойства диаг. прям.), а противоположные стороны равны (свойства прямоуг.) Значит, <BOA=<COD, а <BOC=<AOD (равенство треугол. по трем сторонам) и к тому же равносторонние. Несложно вычислить, что <COD=<BOA=180-(<ACD+<CDB)=180-(70+70)=40 град.
<BOD развернутый (лучи лежат на диагонали прямоугольника) Значит <BOC=AOD=<BOD-<COD=180-40=140 град.
ответ: 40 град., 140 град.
Вектор АВ{Xb-Xa;Yb-Ya} или AB{-2;2}. |AB|=√(-2²+2²)=2√2.
Вектор ВC{Xc-Xb;Yc-Yb} или BC{3;3}. |AB|=√(3²+3²)=3√2.
Вектор CD{Xd-Xc;Yd-Yc} или CD{2;-2}. |AB|=√(2²+(-2²))=2√2.
Вектор АD{Xd-Xa;Yd-Ya} или AD{3;3}. |AB|=√(3²+3²)=3√2.
Итак, противоположные стороны четырехугольника равны.
Проверим углы.
CosA=(Xab*Xad+Yab*Yad)/|AB|*|AD| = (-6+6)/|AB|*|AD| =0,
Значит <A=90°
CosB=(Xab*Xbc+Yab*Ybc)/|AB|*|BC| = (-6+6)/|AB|*|BC| =0,
Значит <B=90°.
Следовательно, четырехугольник ABCD - прямоугольник, что и требовалось доказать.