Трапеция нарисована на чертеже. Большое основание относится к боковой стороне, как 8:6 - свойство биссектрисы. Далее, треугольники, образованные основаниями и кусками диагоналей, с общей вершиной в точке их (диагоналей) пересечения, подобны. Поэтому большое основание относится к малому ТОЖЕ как 8:6.
Пусть х - некая мера длинны, так что большое основание 8*х, малое 6*х, боковая сторона 6*х. Тогда
12^2 + (8*x - 6*x)^2 = (6*x)^2; (построили треугольник, проведя прямую, параллельную боковой стороне через другую вершину)
Отсюда х = (3/2)*корень(2); средняя линяя равна 7*х = (21/2)*корень(2),
Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка ОD. Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится и к другим отрезкам, не только к сторонам. В частности, к медианам. Легко увидеть, чему равно отношение медиан ВО/ВD = 2/3. Значит, и отношение оснований такое же: EF / 15 = 2/3 Отсюда EF = 10 см.
Трапеция нарисована на чертеже. Большое основание относится к боковой стороне, как 8:6 - свойство биссектрисы. Далее, треугольники, образованные основаниями и кусками диагоналей, с общей вершиной в точке их (диагоналей) пересечения, подобны. Поэтому большое основание относится к малому ТОЖЕ как 8:6.
Пусть х - некая мера длинны, так что большое основание 8*х, малое 6*х, боковая сторона 6*х. Тогда
12^2 + (8*x - 6*x)^2 = (6*x)^2; (построили треугольник, проведя прямую, параллельную боковой стороне через другую вершину)
Отсюда х = (3/2)*корень(2); средняя линяя равна 7*х = (21/2)*корень(2),
а площадь = 12*(21/2)*корень(2) = 126*корень(2)
Отрезок EF отнюдь не является средней линией треугольника! Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка ОD.
Рассмотрим два треугольника: основной АВС и верхний EBF.
Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.. Но это же относится и к другим отрезкам, не только к сторонам. В частности, к медианам. Легко увидеть, чему равно отношение медиан ВО/ВD = 2/3. Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.