Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей. Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам. Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD. Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63. Далее по теореме Пифагора находим второй катет - АО. И находим расстояние. Это будет ОК-АО.
Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам.
Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD.
Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63.
Далее по теореме Пифагора находим второй катет - АО.
И находим расстояние. Это будет ОК-АО.
Объяснение:
Для начала проведем высоту из угла в 135° к большей высоте
Рассмотрим получившийся треугольник.
Т.к. у нас была дага трапеция, то острый угол её равен 45°
Тогда в получившемся треугольнике будут дава угла, равных 45°. Тогда этот треугольник является равнобедренным.
Значит, высота, проведённая к большему основанию, равна одной из отсекаемых частей (проекции).
Т.к. у нас первоначально трапеция была прямоугольной, то меньшая боковая сторона равна высоте и этой проекции.
Большее основание тогда равно сумме меньшего основания и проекции:
12 + 7 = 19.
ответ: 19.