Диагональ делит трапецию на два треугольника со средними линиями. В треугольнике средняя линия равна половине параллельной стороны. Задача 10. Больший из отрезков - половина от 10, т.е. 5. Задача 11.Меньший из отрезков - половина от 12, т.е. 6. Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10. В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10. В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22. В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия. Вроде все должно быть верно. Самое главное - путь к ответу.
Точки А и В лежат в плоскости альфа, а точки С и D- в плоскости бета, причём альфа параллельна бета, АВ=СД, а отрезки АС и ВD пересекаются.
а) докажите, что АВ параллельна СD.
б) Один из углов четырёхугольника АВСD равен 65 градусов. Найдите остальные углы
а) АС и ВD пересекаются.
Через две пересекающиеся прямые можно провести плоскость, и притом только одну; то же справедливо и для параллельных прямых.
Следовательно, прямые АВ и СD лежат в той же плоскости. что АС и ВD.
Проведем из D и В перпендикуляры кD и Ве к противоположной плоскости.
Т.к. плоскости α и β параллельны, то кD и Ве параллельны и равны ( на основании того, что это - перпендикуляры между параллельными плоскостями)
Прямые кВ и Dе лежат в одной плоскости кВeD, расстояние между ними равно, следовательно, они параллельны.
АВ принадлежит кВ, DС принадлежит Де, следовательно, АВ||СD.
б) Четырехугольник, в котором противоположные стороны равны и параллельны, - параллелограмм.
Противоположные углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°
Острые углы четырехугольника АВСD равны по 65°. Тупые по-180-65=115°———
Объяснение:
Задача 10. Больший из отрезков - половина от 10, т.е. 5.
Задача 11.Меньший из отрезков - половина от 12, т.е. 6.
Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10.
В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10.
В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22.
В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия.
Вроде все должно быть верно. Самое главное - путь к ответу.