1) Если один угол равнобокой трапеции 63°, то и другой, противоположный угол будет 63°. Сумма внутренних углов трапеции = 360°. Теперь, у нас есть две стороны, найдём остальные 2: 63+63=126° - это сумма двух углов 180-126=54 - это сумма двух других углов 54:2=27 - это два других угла И того, углы трапеции равны 63;63;27;27 2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол: 90+90+63+х=360 243+х=360 х=117° Углы прямоугольной трапеции равны 90;90;63;117
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .
Теперь, у нас есть две стороны, найдём остальные 2:
63+63=126° - это сумма двух углов
180-126=54 - это сумма двух других углов
54:2=27 - это два других угла
И того, углы трапеции равны 63;63;27;27
2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол:
90+90+63+х=360
243+х=360
х=117°
Углы прямоугольной трапеции равны 90;90;63;117