1. Т.к. угол DAB = углу ABD, то получается, что треугольник ABD — равнобедренный, т.е. имеет одинаковые стороны AD = BD. 2. Треугольник BCD идентичен треугольнику ABD, потому что это два равнобедренных треугольника с одной общей стороной. 3. Т.к. периметр BCD = периметру ABD, то AB+BD+AD = 30 см. 4. AB = CD, а BC = AD. Из №3 получаем AB+BC+BC=30 см. 5. При этом зная, что периметр параллелограмма (AB+BC)*2 = 42, то есть AB+BC = 21, мы можем подставить последнее в №4 и получим 21+AD = 30. Т.е. AD = 9 см. 6. Т.к. BC = AD и при этом AB+BC = 21, то, AB + AD = 921 т.е. AB + 9 = 21. AB = 21-9 = 12 см.
ответ: Стороны параллелограмма — 12 см, 9 см, 12 см, 9 см.
Так как угол ADB = 90°, а его гипотенуза равна 24 и он является равнобедренным, мы можем найти его катеты из формулы Пифагора 24 = корень из x*x+x*x[ИКС в квадрате + ИКС в квадрате] 24*24[24 в квадрате] = 596 - это сумма квадратных ИКСов под корнем делим 596 на 2[так как икса у нас два] получаем 288 - это ИКС в квадрате, или 12√2 (см) x=AD=BD=12√2 (см) Далее находим DO (O - центр AB). Угол DOC = 60°(это угол между плоскостями треугольников). DO = √BD*DB - OB*OB = √288 - 144 = 12 (см) Далее находим CO CO = √CB*CB - OB*OB = √400 - 144 = √256 = 16 (см) a*a + b*b - 2*a*b*cos a - эта формула звучит как 'a' в квадрате + 'b' в квадрате - удвоенное произведение 'a' и 'b', умноженное на косинус угла между ними (по ней можно найти 3-ю сторону) То есть эта формула из треугольника DCO, подставляем известные данные и находим третью сторону: √16*16 + 12*12 - 2*16*12*cos60° = √256 + 144 - 2*16*12*(1/2) = √256 + 144 - 192 = √208 = 4√13 (см) ОТВЕТ: 4√13 см
думаю решил без ошибок, но вам лучше пересчитать всё, людям свойственны ошибки :)
2. Треугольник BCD идентичен треугольнику ABD, потому что это два равнобедренных треугольника с одной общей стороной.
3. Т.к. периметр BCD = периметру ABD, то AB+BD+AD = 30 см.
4. AB = CD, а BC = AD. Из №3 получаем AB+BC+BC=30 см.
5. При этом зная, что периметр параллелограмма (AB+BC)*2 = 42, то есть AB+BC = 21, мы можем подставить последнее в №4 и получим 21+AD = 30. Т.е. AD = 9 см.
6. Т.к. BC = AD и при этом AB+BC = 21, то, AB + AD = 921 т.е. AB + 9 = 21. AB = 21-9 = 12 см.
ответ: Стороны параллелограмма — 12 см, 9 см, 12 см, 9 см.
24 = корень из x*x+x*x[ИКС в квадрате + ИКС в квадрате]
24*24[24 в квадрате] = 596 - это сумма квадратных ИКСов под корнем
делим 596 на 2[так как икса у нас два] получаем 288 - это ИКС в квадрате, или 12√2 (см)
x=AD=BD=12√2 (см)
Далее находим DO (O - центр AB). Угол DOC = 60°(это угол между плоскостями треугольников).
DO = √BD*DB - OB*OB = √288 - 144 = 12 (см)
Далее находим CO
CO = √CB*CB - OB*OB = √400 - 144 = √256 = 16 (см)
a*a + b*b - 2*a*b*cos a - эта формула звучит как 'a' в квадрате + 'b' в квадрате - удвоенное произведение 'a' и 'b', умноженное на косинус угла между ними (по ней можно найти 3-ю сторону)
То есть эта формула из треугольника DCO, подставляем известные данные и находим третью сторону:
√16*16 + 12*12 - 2*16*12*cos60° = √256 + 144 - 2*16*12*(1/2) = √256 + 144 - 192 = √208 = 4√13 (см)
ОТВЕТ: 4√13 см
думаю решил без ошибок, но вам лучше пересчитать всё, людям свойственны ошибки :)