З точки А проведено дві дотичних до кола з центром в точці О, які дотикаються до нього в точка В і С. Радіус кола дорівнює ОС = 12 см, а кут між дотичними ∠САВ = 60° .
I. Знайди кут між радіусами, що проведені до точок дотику: ∠СОВ=
°;
II. Знайди від стань від центра кола О до точки А : ОА=
см;
Всю эту задачу можно представить себе так. У нас есть равнобедренный треугольник с углом при вершине (2*альфа) (а при основании (90 - альфа)), и окружность описанная вокруг него. Потом все это "хозяйство" вращается вокруг оси симметрии треугольника (то есть вокруг медианы-биссектрисы-высоты к основанию. Получается конус, вписанный в шар. Надо найти отношение их объемов.
Задача решается так - выбирается за единицу длины какой-то размер, например, радиус R описанной вокруг треугольника окружности (он же - радиус шара). Надо выразить через него половину основания треугольника (это радиус основания конуса) и высоту h (это высота конуса).
Легче всего находится основание - из теоремы синусов
2*R*sin(2*альфа) = a. Поэтому радиус основания конуса r = a/2 = R*sin(2*альфа);
Легко видеть, что h/r = tg(90 - альфа) = ctg(альфа);
h = R*sin(2*альфа)*ctg(альфа) = 2*R*(cos(альфа))^2 = R*(1 + cos(2*альфа));
Объем шара 4*pi*R^3/3;
Объем конуса pi*r^2*h/3 = pi*R^3*(sin(2*альфа))^2*(1 + cos(2*альфа))/3; делим это на объем шара.
ответ (sin(2*альфа))^2*(1 + cos(2*альфа))/4
В принципе можно "повертеть" тригонометрию, но большого смысла в этом нет.
В треугольнике ABC высота CD делит угол C на два угла, причём угол ACD=25 градусов,угол BCD= 40 градусов.
а) Докажите, что треугольник ABC - равнобедренный,и укажите его боковые стороны.
СD - высота. Следовательно, угол АDС=90º
Тогда ∠ САD=180º-90º-25º=65º
∠ВСА=25º+40º=65º
∠ВАС=∠ВСА. Равные углы при стороне АС - признак равнобедренного треугольника. ⇒ АВ=ВС
Доказано.
б)
Высоты данного треугольника пересекаются в точке O. Найдите угол BOC.
ВМ - высота ∆ АВС. Угол ВМС=90º
Для ∆ МОС угол ВОС - внешний и равен сумме двух других, не смежных с ним.
∠ВОС=90º+25º=115º