1. Линия, соединяющая середину диагонали АС и середину стороны АD, является средней линией треугольника АСD и параллельна основанию CD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
2. Линия, соединяющая середину диагонали BD и середину стороны АD, является средней линией треугольника АВD и параллельна основанию АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
3. Линия, соединяющая середину диагонали BD и середину стороны ВС, является средней линией треугольника ВСD и параллельна стороне СD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
4. Линия, соединяющая середину диагонали AC и середину стороны ВС, является средней линией треугольника АВС и параллельна стороне АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
5. Периметр четырёхугольника, вершины которого лежат в
серединах сторон BC и AD и в серединах диагоналей AC и BD, равен:
Назовем наклонные ВА и ВС. Проведем перпендикуляр ВО из точки В к плоскости.
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей на этой плоскости. Следовательно: угол ВОА=90° и угол ВОС=90°. Тогда ∆ВОА и ∆ВОС – прямоугольные.
ВО – общая сторона
Угол ВАО=угол ВСО
Тогда ∆ВОА=∆ВОС как прямоугольные треугольники с равными катетом и острым углом.
Сумма острых углов в прямоугольном треугольнике равна 90°, следовательно:
Так как длина всегда положительное число, то ВА=√2 м.
Тогда ВС=ВА=√2 м так же, как соответственные стороны равных треугольников.
По теореме косинусов в ∆АВС:
АС²=АВ²+ВС²–2*АВ*ВС*cos(ABC)
AC²=(√2)²+(√2)²–2*√2*√2*cos(60)
AC²=2+2–4*0,5
АС²=4–2
АС²=2 м.
Основания наклонных точки А и С, следовательно АС – расстояние между основаниями наклонных. Так как мы ищем квадрат расстояния, то искомая величина равна АС².
14 см
Объяснение:
1. Линия, соединяющая середину диагонали АС и середину стороны АD, является средней линией треугольника АСD и параллельна основанию CD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
2. Линия, соединяющая середину диагонали BD и середину стороны АD, является средней линией треугольника АВD и параллельна основанию АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
3. Линия, соединяющая середину диагонали BD и середину стороны ВС, является средней линией треугольника ВСD и параллельна стороне СD, следовательно, равна 1/2 CD = 8 : 2 = 4 см.
4. Линия, соединяющая середину диагонали AC и середину стороны ВС, является средней линией треугольника АВС и параллельна стороне АВ, следовательно, равна 1/2 АВ = 6 : 2 = 3 см.
5. Периметр четырёхугольника, вершины которого лежат в
серединах сторон BC и AD и в серединах диагоналей AC и BD, равен:
(4 + 3) · 2 = 14 cм.
ответ: 14 см
Дано:
ВО=1 м;
Угол ВАО=45°;
Угол ВСО=45°;
Угол АВС=60°.
Найти: АС².
Найти: АС².Решение:
Назовем наклонные ВА и ВС. Проведем перпендикуляр ВО из точки В к плоскости.
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей на этой плоскости. Следовательно: угол ВОА=90° и угол ВОС=90°. Тогда ∆ВОА и ∆ВОС – прямоугольные.
ВО – общая сторона
Угол ВАО=угол ВСО
Тогда ∆ВОА=∆ВОС как прямоугольные треугольники с равными катетом и острым углом.
Сумма острых углов в прямоугольном треугольнике равна 90°, следовательно:
Угол АВО=90°–угол ВАО=90°–45°=45°.
Получим: угол АВО=угол ВАО, значит треугольник ВОА – равнобедренный с основанием ВА.
Исходя из этого: АО=ВО.
ВО=1 м из условия. Значит: АО= 1 м
По теореме Пифагора в ∆ВОА:
ВА²=ВО²+АО²
ВА²=1²+1²
ВА²=2
Совокупность:
ВА=√2
ВА=–√2
Так как длина всегда положительное число, то ВА=√2 м.
Тогда ВС=ВА=√2 м так же, как соответственные стороны равных треугольников.
По теореме косинусов в ∆АВС:
АС²=АВ²+ВС²–2*АВ*ВС*cos(ABC)
AC²=(√2)²+(√2)²–2*√2*√2*cos(60)
AC²=2+2–4*0,5
АС²=4–2
АС²=2 м.
Основания наклонных точки А и С, следовательно АС – расстояние между основаниями наклонных. Так как мы ищем квадрат расстояния, то искомая величина равна АС².
ответ: 2 м.