З точки М до площини а проведено похилі МN і МК, довжини яких відносяться як 25:26.Знайти відстань від точки М до площини а, якої довжини проекцій похилих МN i МК дорівнюють 14см і 20см
Вершины треугольника - это концы соответствующих векторов. Пусть вектор а = вектор ВС, вектор b=вектор АС и вектор с=векторАВ. Найдем координаты векторов. Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор а(Хс-Хb;Yc-Yb)=a(0-14;14-12)=a(-14;2). Вектор b(Хс-Хa;Yc-Ya)=b(0-(-2);14-0)=b(2;14). Вектор c (Хb-Хa;Yb-Ya)=с(14-(-2);12-0)=с(16;12). Найдем длины сторон треугольника (модули векторов а, b и с). Модуль или длина вектора: |a|=√(Хa²+Ya²). Тогда |a|=√(Хa²+Ya²)=√(196+4)=10√2. |b|=√(Хb²+Yb²)=√(4+196)=10√2. |c|=√(Хc²+Yc²)=√(286+144)=20. Формула радиуса описанной окружности: R=a*b*c/4S, где a,b,c -стороны треугольника, р - его полупериметр. В нашем случае полупериметр равен 10+10√2. Тогда по формуле Герона: S=√[(10+10√2)*10*10*[(10√2)²-10²)] или S=100. R=a*b*c/4S=(10√2*10√2*20)/(4*100)=10. Площадь круга равна Sк=πR². В нашем случае Sк=π*100. ответ: S=100π.
1. Рассмотрим треуг-ик apf. Он равнобедренный по условию, значит, углы при его основании af равны (<paf=<pfa). Пусть этот неизвестный угол будет х, тогда <bac=x+x=2x, <paf=<pfa=x, <apf=180-(<paf+<pfa)=180-2x. Тогда <bpf=180-<apf=180-(180-2x)=2x. То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых). 2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого: - угол b - общий; - <bac=<bpf как показано выше. Для подобных треугольников можно записать отношение сходственных сторон: pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда pf = ac*2:3=6*2:3=4 см
Пусть вектор а = вектор ВС, вектор b=вектор АС и вектор с=векторАВ.
Найдем координаты векторов. Координаты вектора равны разности соответствующих координат точек его конца и начала.
Тогда вектор а(Хс-Хb;Yc-Yb)=a(0-14;14-12)=a(-14;2).
Вектор b(Хс-Хa;Yc-Ya)=b(0-(-2);14-0)=b(2;14).
Вектор c (Хb-Хa;Yb-Ya)=с(14-(-2);12-0)=с(16;12).
Найдем длины сторон треугольника (модули векторов а, b и с).
Модуль или длина вектора: |a|=√(Хa²+Ya²).
Тогда |a|=√(Хa²+Ya²)=√(196+4)=10√2.
|b|=√(Хb²+Yb²)=√(4+196)=10√2.
|c|=√(Хc²+Yc²)=√(286+144)=20.
Формула радиуса описанной окружности:
R=a*b*c/4S, где a,b,c -стороны треугольника, р - его полупериметр.
В нашем случае полупериметр равен 10+10√2.
Тогда по формуле Герона:
S=√[(10+10√2)*10*10*[(10√2)²-10²)] или
S=100.
R=a*b*c/4S=(10√2*10√2*20)/(4*100)=10.
Площадь круга равна Sк=πR².
В нашем случае Sк=π*100.
ответ: S=100π.
<bac=x+x=2x,
<paf=<pfa=x,
<apf=180-(<paf+<pfa)=180-2x.
Тогда <bpf=180-<apf=180-(180-2x)=2x.
То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых).
2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:
- угол b - общий;
- <bac=<bpf как показано выше.
Для подобных треугольников можно записать отношение сходственных сторон:
pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда
pf = ac*2:3=6*2:3=4 см