З точки С до прямої проведено дві похилі СА та СВ, проекції яких на цю пряму дорівнюють 5 см і 9 см. Знайдіть периметр трикутника АВС, якщо різниця проекцій похилих дорівнює 2 см
а) Из условия имеем, что точка пересечения высот лежит на FD. Это может быть только если тр-к DFE - прямоугольный, угол F = 90 гр.
Найдем катет FD:
FD = кор(17^2 - 8^2) = 15
Площадь: S = 8*15/2 = 60
б) Из условия имеем, что DK - и биссектриса и медиана. Значит DEF - равнобедренный. DF = DE = 17, EF = 8
Полупериметр: р = (8+17+17)/2 = 21
Площадь:
S = кор(21*13*4*4) = 4кор273 (примерно 66)
в) Из условия имеем, что биссектриса DK является еще и срединным перпендикуляром. Значит треугольник DEF - равнобедренный. DE= DF=17
Далее решение аналогично п.2.
ответ: 4кор273 = 66 (примерно).
P.S. В 1) и 2) мы воспользовались тем, что прямая и точка, не прин. этой прямой - задают плоскость и притом только одну. Если же говорят о 2 и более плоскостях, значит точка лежит на этой прямой. В 3) мы воспользовались утверждением, что прямая может пересечь плоскость только в одной точке.
1). 1-0,5+2*0,5=1,5
2). sin2a-cos2a+1=sin2a+(1-cos2a)=2sin2a
3). ctg2B*sin2B-1=(cos2B/sin2B)*sin2B-1=cos2B-1=-sin2B
4).a больше 0, но меньше 90 градусов, следовательно число расположено в 1 четверти, следовательно синус больше нуля, тангенс больше нуля
соs а=3/5
cos2a+sin2a=1 (основное тригонометрическое тождество)
sin2a=1-9/25
sin2a=6/25
sina=(корень из 6)/5, так как синус больше нуля
tga=sina/cosa=(корень из 6)/5:3/5=(корень из 6)/3, так как тангенс больше нуля
Объяснение:
Извини, если немного непонятно. Мне, просто, было лень писать от руки
а) Из условия имеем, что точка пересечения высот лежит на FD. Это может быть только если тр-к DFE - прямоугольный, угол F = 90 гр.
Найдем катет FD:
FD = кор(17^2 - 8^2) = 15
Площадь: S = 8*15/2 = 60
б) Из условия имеем, что DK - и биссектриса и медиана. Значит DEF - равнобедренный. DF = DE = 17, EF = 8
Полупериметр: р = (8+17+17)/2 = 21
Площадь:
S = кор(21*13*4*4) = 4кор273 (примерно 66)
в) Из условия имеем, что биссектриса DK является еще и срединным перпендикуляром. Значит треугольник DEF - равнобедренный. DE= DF=17
Далее решение аналогично п.2.
ответ: 4кор273 = 66 (примерно).
P.S. В 1) и 2) мы воспользовались тем, что прямая и точка, не прин. этой прямой - задают плоскость и притом только одну. Если же говорят о 2 и более плоскостях, значит точка лежит на этой прямой. В 3) мы воспользовались утверждением, что прямая может пересечь плоскость только в одной точке.