В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ianna9227p00tfn
ianna9227p00tfn
09.08.2022 15:03 •  Геометрия

Задача 1) Дана плоскость a и не пересекающий ее отрезок АВ. Через концы отрезка АВ и его середину С проведены параллельные прямые, пересекающие плоскость a в точках А1 , В1 и С1 соответственно. Найти длину отрезка СС1 , если АА1 = 3, ВВ1 = 4
Задача 2) Через точку М проведены две прямые, пересекающие параллельные плоскости a и b в точках А, В и С, D соответственно. Точка А делит отрезок МC в отношении 2 : 3, считая от точки М. Найти длину отрезка АB, если CD = 15

Показать ответ
Ответ:
ала213
ала213
02.05.2022 10:24
АВ = Рabcd : 4 = 12 : 4 = 3 см
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см

ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.

Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.

Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3  / (2√(5 - 4cos80°))

BB₁ = 3x = 9  / (2√(5 - 4cos80°)) или
BB_{1} = \frac{9}{2 \sqrt{5 - 4cos 80^{0} } }

Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁  = 9  / (2√(5 - 4cos80°)) ≈ 2,2
0,0(0 оценок)
Ответ:

Рассмотрим ∆ АВD и ∆ СВЕ

Оба прямоугольные и имеют общий острые угол АВС. 

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.

Из подобия следует отношение 

ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒

ВЕ:ВС=ВD:АВ

Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий. 

2-й признак подобия треугольников:

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны. 

Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать. 

Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС. 


Ad перпендикулярно вс; се перпендикулярно ав доказать, что треугольник авс подобен треугольнику dbe
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота