Задача 1. Проведена медиана АС в равнобедренном треугольнике АКО с основанием КО. Найдите медиану АС, если периметр треугольника АСО равен 36 см, а периметр треугольника АКО равен 54 см.
Задача 2.
На сторонах ∠D отмечены точки М и К так, что DМ = DК. Точка Р лежит внутри ∠D и РК = РМ . Докажите, что луч DР – биссектриса ∠МDК .
Задача 3.
В равнобедренном треугольнике DМK с основанием МK = 16 см отрезок DF – биссектриса, ∠MDF = 44˚. Найдите KF, ∠MDK, ∠МFD.
КТР - искомое сечение.
2. Пусть К - середина AD, Р - середина СС₁, Т - середина А₁В₁.
1) Т₁С - проекция прямой ТР на плоскость основания.
ТР ∩ Т₁С = Е, - это точка пересечения прямой ТР с плоскостью основания.
Точки Е и К принадлежат основанию, значит ЕК - след сечения на плоскости основания.
ЕК ∩ CD = L
KL - отрезок сечения.
Точки L и Р лежат в одной плоскости, соединяем.
PL - отрезок сечения.
2) Плоскость (АВС) пересекается с плоскостью (АА₁В₁) по прямой АВ.
KL ∩ AB = F
Точка F принадлежит плоскости (АА₁В₁) и точка Т тоже.
FT ∩ AA₁ = M
КМ и ТМ - отрезки сечения.
3) Плоскость (АА₁В₁) пересекается с плоскостью (ВВ₁С₁) по прямой ВВ₁.
FT ∩ BB₁ = G.
Точка G принадлежит плоскости (ВВ₁С₁) и точка Р тоже.
GP ∩ B₁C₁ = N.
NP и NT - отрезки сечения.
KMTNPL - искомое сечение.
1) пусть одна сторона будет Х ( а их две) , а вторая (мы знаем из условия) =9 (их тоже две)
зная периметр ,найдем сторону
Х+Х+9+9=26
2Х+18=26
2Х=26-18=8
Х=4
2) зная что одна сторона =4, а вторая =9 ,найдем площадь прямоугольника
9 умножить на 4 = 36
3)мы знаем что площадь квадрата (равна площади прямоугольника ) = 36
Т.к. в квадрате стороны равны и мы знаем что площадь =36, то одна сторона квадрата будет равна корню их 36 т.е. = 6
( 6 на 6 =36 )
ответ :сторона квадрата =6