Задача 1.
Смоделируйте пирамиду, в основании которой лежит треугольник и боковое ребро перпендикулярно основанию, и обозначьте ее. Назовите:
1) вершины
2)ребра оснований
3) боковые ребра
4) основание
5) боковые грани
6) высоту пирамиды
7) апофему
8)угол между боковым ребром и основанием
9) угол между боковой гранью и основанием
10) угол между боковым ребром и высотой.
Задача 2.
FABCD – правильная пирамида, О –точка пересечения диагоналей основания, FO перпендикулярно (АВС).
Задача 3.
ДАВС-пирамида, ДА перпендикулярно (АВС), АВ=ВС=АС=2, АД=1. Найдите SВСД.
а) Чтобы точка B была симметрична точке A относительно оси x, необходимо заменить координату y точки A на противоположное число, а координату x оставить точно такой же, значит a = 4; b = 3.
б) Чтобы точка B была симметрична точке A относительно оси y, необходимо заменить координату x точки A на противоположное число, а координат y оставить точно такой же, значит a = -4; b = -3.
в) Чтобы точка B была симметрична точке A относительно начала координат, необходимо заменить координаты y и x точки A на противоположные числа, значит a = -4; b = 3.
КМ = √(NK² + NM² - 2·NK·NM·cos60°) = √(64 + 225 - 2·8·15·0,5)
KM = √(289 - 120) = √169 = 13 см
Pkmn = 8 + 15 + 13 = 36 см
Skmn = 1/2 · NM · NK · sin60° = 1/2 · 8 · 15 · √3/2 = 30√3 см²
2. ∠С = 45° + 60° = 105°
∠B = 180° - 45° - 105° = 30°
По теореме синусов:
AC : sin∠B = BC : sin ∠A
AC = BC · sin30° / sin45° = 3√2 · 1/2 / (√2/2) = 3 см
3. Пусть х - коэффициент пропорциональности.
АВ = 4х, ВС = 7х.
В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон:
(AB² + BC²) · 2 = AC² + BD²
(16x² + 49x²) · 2 = 324 + 196
65x² · 2 = 520
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 4 · 2 = 8 см
ВС = 7 · 2 = 14 см
Pabcd = (AB + BC) · 2 = (8 + 14) · 2 = 44 см
4. По теореме, обратной теореме Пифагора, треугольник со сторонами 7, 24 и 25 см прямоугольный:
25² = 7² + 24²
625 = 49 + 576
625 = 625
Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы:
R = AB/2 = 25/2 = 12,5 см
r = p - AB, где р - полупериметр.
р = (7 + 24 + 25)/2 = 56/2 = 28 см
r = 28 - 25 = 3 см