. Задача 1. В треугольнике АВС известно, что АВ = 8 см, ∟А = 30 градусов , ∟ В = 105 градусов. Найдите сторону ВС.
Задача 2. Не вычисляя углов треугольника, определите его вид (по величине углов), если стороны треугольника равны: а) 7, 8 и 12; b) 30,40 и 50; с) 13, 14 и 15.
Пусть в треугольнике АВС угол А равен а, угол с равен ь, проведены биссектрисы AD и СЕ, которые пересекаются в точке О (см. рисунок). Рассмотрим треугольник АОС. Сумма его углов равна 180 градусам, тогда угол АОС равен 180-1/2ВАC-1/2BCA= 180- AC - ECA = 180 - 1/2 (a+b). Угол, под которым пересекаются две прямые это наименьший из углов, которые получаются при их пересечении. Докажем, что угол ЕОА будет меньше угла АОС, тогда угол ЕОА - угол, под которым пересекаются биссектрисы. Действительно, угол ЕОА является смежным с углом АОС, тогда он равен 1/2(a+b). Так как а+ь<180, 1/2(a+b)<90 и 2(a + b) < 180 /2(a+b), то есть, какими бы ни были углы а и ь, угол ЕОА всегда будет меньше угла АОС. Окончательный ответ - 1/2(a+b).
2)б.
3)а.
4)в.
5)я прикрепила картинку к этому заданию.Не забудь написать «Дано: треугольникABC; a=7;b=8;c=5. Найти : <А-?» ответ , кстати , в конце <А=60 градусов.(просто не поместилось.)
6)AB=10x
S=pr
p=13x+13x+10x2=18x
S=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ — по формуле Герона.
приравниваем два равенства и находим х
10∗18x=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√180x=18x∗5x∗5x∗8x‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
180x=60x2
x=3
AB=10x=30
ответ: 30
7) если СК биссектриса, то по ее свойству если СЕ/СВ=3:1 то и КЕ:ВК=3:1
Обозначим ВК=у, КЕ=3у значит, ВЕ=4у
т.к. угол ВОЕ центральный для угла С, то он=120 и тогда ∠ВОК=60
ВМ=ВО*sin 60
BM=8√3*√3/2=12 ВЕ=4у=24 ⇒ у=6 3у=3*6=18
8) 1. Теорема синусов для треугольника КОР KP/sin KOP=OP/sin OKP sin OKP=3*sqrt2*sqrt2/2/5=3/5 cos^2(OKP)=1-sin^2(OKP)=(4/5)^2 Т.к. КОР тупой, то ОКР острый, cos OKP=4/5
2. sin OPK=sin(180-KOP- OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10
3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3
9) Если диагонали трапеции перпендикулярны, то площадь можно найти по следующим формулам: S-Һв квадрате, где һ-высота или S-(a+b)в квадрате/4, где а иb -основания Воспользуемся последней формулой!Т к дана длина ср линии трапеции, то можно найти сумму длин оснований трапеци: ср линия3 1/2(а+b); 5%31/2(а+b); (а+b)-10см Найдем S- (а+b)в квадрате/4 %3D10в квадрате/ 4-25см2
10)в.