В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sleta1998A
sleta1998A
01.11.2021 10:25 •  Геометрия

ЗАДАЧА ДАЮ Сторона АВ трикутника ABC лежить у площині альфа. Площина бетта, яка паралельна площині альфа , перетинає сторони АС і ВС у точках А1 і В1 відповідно. Знайдіть довжину відрізка А1В1, якщо АB = 12 , CB1 : B1B = 2 : 3

Показать ответ
Ответ:
MariyaKokhonova
MariyaKokhonova
22.08.2021 12:52

Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.

x = (180 - 60)/2 = 120/2 = 60

Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:

AB = √(OB^2 - AO^2)

AB = √(4^2 - 2^2)

AB = √(16 - 4)

AB = √(12)

AB = √(4 * 3)

AB = 2√3


Точки a и b лежат на двух окружностях с общим центром и радиусами ra=2 см и rb=4 см соответственно.
0,0(0 оценок)
Ответ:
франческа033
франческа033
16.04.2023 15:05
Сделаем построения и введём обозначения, как показано на рисунке. Пусть O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём

Отрезки и OK равны как радиусы вписанной в треугольник ABC окружности, то есть Рассмотрим треугольники ALO и AOK, они прямоугольные, углы LAO и OAK равны, AO — общая, следовательно, треугольники равны, откуда Аналогично из равенства треугольников COM и COK получаем а из равенства треугольников BOL и BOM — Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

Площадь параллелограмма равна произведению высоты на основание:

Рассмотрим треугольники ABC и ACD, AB равно CD, AD равно BC, углы ABC и ADC равны, следовательно, треугольники ABC и ACD равны. Поэтому площадь треугольника ABC равна половине площади параллелограмма:

Площадь параллелограмма равна:

ответ:
Впараллелограмме abcd проведена диагональ ac. точка o является центром окружности, вписанной в треуг
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота