Задача: Необходимо определить суммарный теплоприток в холодильной камере Polaris, объем цилиндра компрессора камеры, мощность на валу компрессора, тепловую нагрузку на конденсатор. Известны габаритные размеры камеры 1360*1960*2200 мм, температура среды внутри камеры — 4°С, суточное поступление продуктов в камеру 300 кг/сут, удельная теплоемкость продукта 1254 кДж/(кг*К)
A - B = 80
внешний угол при вершине А больше внешнего угла при вершине B в 2 раза. Внешний угол - это разность между 180° и внутренним углом. То есть внешний угол при вешине А равен 180°- A, при вершине B 180°- B. Т.к. При вершине А внешний угол больше в 2 раза, то
Получаем систему уравнений:
Тогда угол C равен 180°- 100°- 20° = 60°
Внешние углы равны:
при вершине А 180°- 20° = 160°;
при вершине B 180°- 100°= 80°;
при вершине C 180°- 60° = 120°.
Наибольшая разность - это разность между максимальным значением и минимальным, т.е. 160°- 80° = 80°, разность между внешними углами при А и при С.
ΔАВС - равносторонний, по условию С₁О - это отрезок, соединяющий центр О основания АВС с вершиной С₁, и перпендикулрный плоскости основания АВС, значит, пирамида C₁ABC - правильная, но не только, это и правильный тетраэдр, пусть все его стороны равны 1, тогда можно заметить, что в пирамиде С₁АВВ₁А₁ в основании лежит ромб, а её высота падает в точку Н - точку пересечения диагоналей ромба, но её боковые грани состоят из правильных треугольников, а значит, что и их прокеции будут равны и ВАУ! мы получаем в основании квадрат! То есть сама изначальная призма состоит из правильного тетраэдра и правильной четырёхугольной пирамиды, все стороны которых равны по 1.
∠(АА₁;(АВС₁)) = ∠(ВВ₁;(АВС₁))
Рассмотрим пирамиду В₁АВС₁ и возпользуемся методом площадей:
C₁H² + B₁H² = B₁C₁² ⇒ C₁H = √2/2 ; S (abc) = √3/2 ; S (abb₁) = 1/2
См. приложение. ответ: arcsin(√6/3)