решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
ответ 8 см.
решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см