Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
1)
В параллелограмме (а точнее это будет ромб)
с одной стороны диагонали УГОЛ -90 град - перпендикулярна стороне
с другой стороны от неё же УГОЛ - 45 град -другой стороной образует угол 45 град
значит эта диагональ разделила УГОЛ 90+45=135 град
все -дальше просто - углы по часовой стрелке такие 135 - 45 -135 -45
эта диагональ разбивает параллелограмм на два прямоугольных равнобедренных треугольника
1 сторона параллелограмма катет = 2 см
2 сторона параллелограмма гипотенуза =2*√2 см
2)
главное, что они перпендикулярны
в любом случае это катеты прямоугольного треугольника
вектора a-b и a+b - это гипотенузы
|a-b |= |a+b|=√(3^2+4^2)=√25 = 5