Задачи 1. Задача: Найди смежные углы, если один из них в 5 раз меньше другого.
2. Задача: При пересечении двух прямых образовались такие углы, что сумма двух из них равна 1000. Найди все углы.
3. Задача: Один из углов, образовавшихся при пересечении двух прямых, равен 450. Найди остальные углы.
4. Задача: Один смежный угол в 8 раз больше другого. Найди оба угла.
5. Задача: Один из смежных углов на 400 больше другого. Найди оба угла.
6. Задача: При пересечении двух прямых образовались такие углы, что сумма двух из них равна 600. Найди все углы.
радиус круга равен половине стороны квадрата, т.к. круг вписан в него,
радиус равен двум,
отношение биссиктрисс в точке разрыва относится как два к одному от вершины ( есть такое свойство), отсюда две части равно двум см, следоаательно три части трем см, далее рассмотрим прямоугольный треуг. у которого катет один равен трем, углы равны 60° и 30°, по свойству каьета лежащего против угла в 30° он равен половине гиппоьинузы, пусть этот катет равен х, тогда гипп равна 2х
из т.П. 3=√(4х^2-х^2)=х√3=> х=3/√3=√3, отсюда гипп равна 2√3
и найдем площадь треугольника
sΔ=1/2 *3*2√3=3√3 см^2
2.Напишите уравнение сферы радиуса R = 7 с центром в точке A(2; 0; -1).
3.Лежит ли точка А(-2; 1; 4) на сфере, заданной уравнением
(x+2)2+(y-1)2+(z-3)2=1.
, значит точка А(-2; 1; 4) Лежит на сфере, заданной уравнением (x+2)2+(y-1)2+(z-3)2=1.
4.Если точки А и В принадлежат сфере, то любая точка отрезка АВ не может принадлежать этой сфере, АВ - это хорда, и только две точки - А и В - принадлежат этой сфере
5.В этом задании "Могут ли все вершины прямоугольного треугольника с катетами 4 см и 2 см лежать на сфере радиуса см?" не указан радиус сферы.
Однако, если все вершины прямоугольного треугольника с катетами 4 см и 2 см и гипотенузой √(16+4)=√20 лежат на сфере, то 2R≥√20, т е R≥√20 /2. Если радиус будет известен на вопрос ответишь сам
6.Формула площади круга:
7.
- уравнение окружности
координаты центра (3;0;0) и радиус окружности R=3