Задан треугольник: Определите, какие из следующих выражений истинны: C 1) AB = AC + ВС – АС - BC - cosC 2) АВ? = AC2 + BC2 – Ас - ВС - cos? С 3) АВ? = АС? + BC2 – 4 AC - BC - cosC · 4) АВ? = АС? + ВС? – 2AC - BC - cosC · . = E ВС АС A АВ 5) sin A AB sin B ВС sin C AC 6) sin C sin A AB BC 7) sin B sin C sin B AC = sin A
a^2 = b^2 + c^2 -2 ab* cosC
a^2 = 6^2 + 10^2 - 2 * 6 * 10 * cos 120= 136 - 120* cos120 =136 - 98 = 38
извлекаем квадратный корень
а = 6,2 см третья сторона треугольника
- точку касания окружностью стороны АВ точкой К,
- точки пересечения осью окружности, перпендикулярной стороне АС, со стороной АС за точку Р, со стороной АВ за точку Е.
Центр О окружности лежит на перпендикуляре, проведенном к середине отрезка MN.
Отрезок АР = 8+((30-8)/2) = 8 + 11 = 19.
Решение основано на теореме касательной и секущей.
Касательная АК=√(8*30)=√240 = 15.49193.
Отрезок касательной КЕ (до оси окружности) равен АЕ-АК= 19 / cosA- 15.49193 = 19 / 0.968246 -15.49193 = 19.62312 - 15.4919 = 4.131182.
Радиус равен этой величине, делённой на тангенс угла КОЕ (он равен углу А).
Тангенс угла КОЕ равен:
tg KOE = tg(A) = sin(A) / cos(A) = √(1-cos²(A)) / cos(A) =
= √(1 - (15/16)) / (√15/4) = (1/4) / (√15/4) = 1/√15 = 0.258199.
Тогда R = 4.131182 / 0.258199 = 16.