Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Древнеегипетская астрономия уходит в глубокую старину: египтяне были одними из первых, кто вёл наблюдения звёздного неба; авторы МЭСБЕ ставят их астрономию в один ряд с китайской[en], индийской и вавилонской (халдеи)[1]. В Египте и общавшихся с ним странах установился довольно точный определения времени года посредством гелиакического восхода звезды Сириус, — летосчисление глубокой древности. Служа для определения времени года, восход или заход определённой звёзды мог служить также и для оценки часа ночи[2]. Египтяне первыми определили год в 365 дней и 6 часов[3].
Для египтян разлив священной реки Нил — земного отражения небесного Млечного Пути[4] — всегда совпадал с восходом Сириуса[5]. Появление Сириуса повторяется через правильные промежутки времени, а именно через каждые 365 1/4 дней[6]. Каждые четыре года Сириус восходил днём позже, из-за чего через 365 х 4 = 1460 лет разница между гражданским календарём (360 дней + пять дней-эпагоменов) и солнечным годом достигала целого года[5], который и прибавлялся к 1460 годам, образуя цикл из 1461 солнечного года[6]. Весь 1461-й год сириусного цикла (сотического[en] — по греческому именованию звезды) считался одним днём Сириуса и превращался в годовой праздник египетского народа[7]. Также каждый восход Сириуса сопровождался известными празднествами, хотя и не приходился на день гражданского Нового года. В древнеегипетских надписях сохранились данные о восходе Сириуса.[5]
Библейское Пятикнижие, переданное египетским жрецом Моисеем (ок. XV века до н. э.), включает космогонические знания. Греческая античная астрономия (VI век до н. э. — V век н. э.) стала плодом учёных мужей, обучавшихся у египетских жрецов (Фалес, Пифагор, Демокрит, Аристарх, Евдокс и др.)[3]