Задание 2 Какие художественные средства использованы в следующих отрывках? Запишите 1) Как серна гор, пуглив и дик
И слаб и гибок, как тростник 1б2) Глазами тучи я следил,
Рукою молнию ловил... 1б
3) И кудри виноградных лоз Вились, красуясь меж дерев 1б
это литра
На этой прямой могут быть 2 точки, равноудалённые от точки (5;3) - обозначим её О.
Для нахождения координат таких точек решим систему уравнений прямой у = х и окружности с центром в точке (5;3) радиусом √10.
у = х
(х-5)²+(у-3)² = 10 заменим у на х
(х-5)²+(х-3)² = 10
х²-10х+25+х²-6х+9 = 10 приводим подобные:
2х²-16х+24 = 0 сократим на 2:
х²-8х+12 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-8)^2-4*1*12=64-4*12=64-48=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-(-8))/(2*1)=(4-(-8))/2=(4+8)/2=12/2=6;x₂=(-√16-(-8))/(2*1)=(-4-(-8))/2=(-4+8)/2=4/2=2.
Получили 2 точки на оси Ох, такие же координаты и на оси Оу, поэтому задача имеет 2 решения:
(х-6)²+(у-6)² = 10,
(х-2)²+(у-2)² = 10.
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42